
Human Preferences and
Human Control for

Reinforcement Learners

Owain Evans
University of Oxford

FHI

Collaborators

Andreas Stuhlmueller (Stanford, ought.com)

John Salvatier (Oxford, AI Impacts)

Noah Goodman (Stanford, Uber AI)

http://ought.com

Collaborators

David Krueger (MILA Montreal)

Jan Leike (DeepMind, Oxford)

David Abel (Brown)

Overview
GOAL: agents that (a) learn policies aligned with human
preferences (b) via safe learning/exploration (“Safe RL”).

Overview
GOAL: agents that (a) learn policies aligned with human
preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

1. Hand-code reward function before learning.

2. Learn rewards or policy from demonstration (IRL or
imitation learning)

3. Human provides rewards online (TAMER, Active Reward
Learning).

Overview
GOAL: agents that (a) learn policies aligned with human
preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

1. Hand-code reward function before learning.

2. Learn rewards or policy from demonstration (IRL or
imitation learning)

3. Human provides rewards online (TAMER, Active Reward
Learning).

IRL with Bounded, Biased Agents
IRL assumes human demonstrator is optimal up to
random noise (softmax/Boltzmann)

Humans deviate systematically from optimal:

• Biases: hyperbolic discounting, prospect theory.

• Cognitive bounds: forgetting, myopic (limited depth)
planning.

IRL with Bounded, Biased Agents
IRL assumes human demonstrator is optimal up to
random noise (softmax/Boltzmann)

Humans deviate systematically from optimal

e.g. Person smokes every week but wishes to quit.

IRL with Bounded, Biased Agents
There are decision problems s.t.

• IRL on biased agents can lead to arbitrarily mistaken
inferences ….

• … but true preferences can be recovered (by modifying
IRL)

• Problems are simple, uncontrived: Procrastination,
Temptation, Bandits (explore/exploit).

IRL with Bounded, Biased Agents
More info:
“Learning the Preferences of Ignorant, Inconsistent Agents” AAAI 2016. 
“Learning the Preferences of Bounded Agents” NIPS workshop 2015. 
http://www.agentmodels.org

●

●

●

●
● ● ● ●

0.2

0.4

0.6

0:
Noth

ing

1:
Prom

ise
d

2:
Prom

ise
d

3:
Prom

ise
d

4:
Prom

ise
d

5:
Prom

ise
d

6:
Prom

ise
d

Day and state

In
fe

rre
d

ut
ilit

y
of

 h
el

pi
ng

 fr
ie

nd

●

Optimal agent
Potentially discounting

Discounting

(a)

● ● ●
●

●

●

●

125

150

175

200

0.001 0.010 0.100

Risk probability

In
fe

rre
d

ut
ilit

y
of

 ta
lle

r m
ou

nt
ai

n

●

Optimal agent
Monte Carlo

Monte Carlo

(b)

●

●

●
●

●
●

3

4

5

0 1 2 3 4 5

Trials where agent chooses A

In
fe

rre
d

ut
ilit

y
of

 re
st

au
ra

nt
 A

●

Optimal agent
Potentially myopic

Myopic planning

(c)

●

● ● ●

0.9

1.2

1.5

1.8

0 1 2 3

Trials where agent chooses A

In
fe

rre
d

ut
ilit

y
of

 re
st

au
ra

nt
 A

●

Optimal agent
Potentially bounded VOI

Bounded VOI

(d)

Figure 2: Examples of inferences about utilities for optimal and bounded agents

the comments has negative utility to you because it is tedious and will take a whole
day. The paper will be submitted in T days and comments are more helpful earlier.

There are two decisions to make. First, you decide whether to promise your friend that you will offer
prompt comments, i.e., move from “do nothing” to “promise” node in Figure 3. After you promise,
they send you the paper and the next day you decide whether to “do work” (which results in the
“help friend” outcome) or to stay in the “promise” state. There is no cost to staying in “do Nothing”,
but there is a tiny cost of ✏ for every day in “promise”. Doing the work has a one-time cost of 1

and, after you have done the work, you receive +R for every day until T .

Suppose the agent moves to “promise” but never moves to “help friend”. This results in an out-
come that is worse than staying at “do nothing” the entire time. We call this procrastinating. The
optimal agent (without softmax noise) never procrastinates. It either does the work without unnec-
essary delay or does nothing1. Time-inconsistent agents can procrastinate depending on R and the
discount rate k

h

. The Naive discounting agent hallucinates that it will “do work” after first moving
to “promise”, but once actually at “promise”, it delays the work indefinitely.

We set T = 8 and condition on the observation that the agent procrastinates, i.e. moves directly to
“promise” and then stays there for the remaining 7 days. The goal is to infer R (the utility of helping
the friend). We compare the “optimal” model (no time-inconsistency) to a “potentially discounting”
model that includes both Naive discounting and optimal planning. Figure 2a shows that under both
models, the expected posterior value of R is low. However, the value for the discounting model is
higher, as it can explain away the agent’s not helping by a higher discount rate k

h

. Additionally (not
shown), we infer high noise when we assume optimality, since the optimal agent only intentionally
endures the ✏ cost of moving to “promise” if it will then do the work. Since the agent did not do
the work, it must have high noise if it is (otherwise) optimal.

2. Neglect of low-probability events (Monte Carlo approximation)

Consider the following problem:

John is hiking and has to choose between climbing up to the Tall peak or the Short
peak. The Tall peak is more spectacular, but comes with a small probability p

d

of disaster (e.g. death or injury). We assume John has no uncertainty about his
utilities for Tall and Short, and that John knows p

d

.

We aim to infer John’s utility for climbing the Tall peak, U
t

, relative to the cost of disaster. We com-
pare an “optimal” model (which solves the MDP exactly) with a Monte Carlo model (“MC”) where
the agent samples N times from the state transition function to approximate an action’s expected
utility. We set a low prior on U

t

being close in magnitude to the cost of disaster. The MC model
has a broad prior on N and includes planning behavior indistinguishable from optimal as a special
case. We condition on the observation that John moves directly to the Tall peak. Figure 2b shows
the posterior mean for U

t

as a function of the probability of disaster p
d

. For both models, as p
d

1It does the work if R(T 2) > (1 + ✏).

4

do
nothing!
u = 0

promise!
!

u = -

do !
work!

u = -1

help
friend!

u = +R

Figure 3: Transition graph for Example 1 (procrastination). Nodes represent states; u is the utility
the agent receives for every day spent at the state. Arcs indicate possible (uni-directional) determin-
istic transitions between states. The agent takes T = 8 actions, one for each day. We condition on
observing the agent moving directly to “Promise” and staying there for the remaining 7 days.

var agent = function(state, delay, timeLeft){
return Marginal(function(){
var action = uniformDraw(actions)
var eu = expUtility(state, action, delay, timeLeft)
factor(alpha * eu)
return action

})
}

var expUtility = function(state, action, delay, timeLeft){
var u = discountedUtility(state, action, delay, K)
if (timeLeft == 1){
return u

} else {
return u + expectation(INFER_EU(function(){

var nextState = transition(state, action)
var nextAction = sample(agent(nextState, delay+1, timeLeft-1))
return expUtility(nextState, nextAction, delay+1, timeLeft-1)

}))
}

}

var simulate = function(startState, totalTime){
var sampleStateSequence = function(state, timeLeft, history){
if (timeLeft==0){

return history
} else {

var delay = 0
var action = sample(agent(state, delay, PLANNING_HORIZON))
var nextState = transition(state, action)
return sampleStateSequence(nextState, timeLeft-1, update(history, nextState))

}
}
return Marginal(function(){
return sampleStateSequence(startState, totalTime, initHistory(startState))

})
}

Figure 4: Implementation of a generative model for agents in the MDP setting. The language is
WebPPL (with minor implementation details omitted) [20]. Note the mutual recursion between
agent and expUtility: the agent’s reasoning about future expected utility includes a (po-
tentially biased) model of its own decision-making. The function Marginal computes exact
distributions over the output of its function argument. The factor statement implements soft
conditioning—it is used here for softmax “planning-as-inference” [22]. To generate agent behav-
ior, we specify a decision problem by providing implementations for transition and utility.
We then call simulate(startState, totalTime). For exact planning, we set INFER_EU
to Marginal. For the Monte Carlo agent, we set INFER_EU to a function that computes sampling-
based approximations. If the constant K is set to zero, the agent does not discount (and so is optimal);
otherwise, the agent performs Naive hyperbolic discounting.

7

Overview
GOAL: agents that (a) learn policies aligned with human
preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

1. Hand-code reward function before learning.

2. Learn rewards or policy from demonstration (IRL or
imitation learning)

3. Human provides rewards online (TAMER, Active Reward
Learning).

Active Reinforcement Learning

Human provides rewards online

Label the state-actions that actually occur

Problem: how to reduce burden on human?

Active Reinforcement Learning: agent selects which
state-actions are labeled by human.

Environment

Agent

saHuman

r?
r

Active Reinforcement Learning

Environment

Agent

saHuman

r?
r

MILA
INSTITUT

DES ALGORITHMES
D’APPRENTISSAGE

DE MONTRÉAL

Dominique Tessier / Territoires / Université de Montréal

logotype MILA - U.Montréal_14.03.16

Active Reinforcement Learning:
Observing Rewards at a Cost

David Krueger Jan Leike John Salvatier Owain Evans

What is Active Reinforcement Learning?

Figure 1: The Active RL agent-environment interface

The Active RL (ARL) problem:

• Agent chooses whether to observe reward Rt on time-step t

• Observing Rt has cost c

• Goal: maximize
P

t Rt � c qt, qt =

(
1 if Rtis observed
0 else

Details / clarifications:

• Reward is collected even when unobserved

• Agent chooses action At and whether to observe reward simultaneously

• Only Rt can be observed at time-step t

Motivations

Reward functions are complex

• Specifying a reward function

R : S ⇥ A ! R
is like specifying a classification function

f : image ! category.

This is too hard (for many tasks of interest)

• Idea: avoid specifying entire reward function by providing reward online

Active Learning is efficient

• Rewards ⇠ Labels: a form of supervision (bottleneck!)

• Goal: Maximum learning from minimum supervision

• Active (Supervised) Learning can be exponentially more efficient (sample complexity)

Active Bandits

Problem Characteristics

• Must pay to observe reward (even though it’s known to be suboptimal)

• Regret ⇠ ⇥(n2/3) (a “hard” partial monitoring problem (Piccolboni et al. 2001, Antos et al. 2013))

• No index strategy or greedy solution.

Algorithm: Mind-changing cost heuristic (MCCH)

• Front-load observations (Explore-then-exploit)

• Estimate # observations needed to move 2nd-best posterior to 1st-best (as m̂ := max{1, d2mini((Ti + 1)

ˆ

�i)
2e})

• Stop exploring (= observing Rt) when cm̂
↵ > expected regret of (apparent) best arm

MDP Algorithms

Basic Set-up

• Model-based RL with PSRL (aka Thompson Sampling)

• “observation policy”: chooses whether to observe Rt (based on model)

• “primary policy”: chooses actions (based on model AND observation policy)

• (optionally) update observation policy in-the-loop (ala PSRL)

Estimating observation policy performance: “(A)SQR”

• Compare observation policies (e.g. “query (s, a) on the first N visits”) via Monte Carlo rollouts

• Assumes all state-actions are equally valuable to observe =) problems with avoidability

Estimating V OI(s, a): “Greedy VOI”

• V OI(s, a) := performance improvement from knowing R(s, a)

• Observe R(s, a) iff V OI(s, a) > ↵c
#episodes remaining

• Assumes V OI(s, a) does not depend on other (s, a) =) problems with state-interdependent VOI

Bandit Experiments

(a) Means 0.8 and 0.5, cost c = 50. (b) Means 0.7, 0.5, 0.4, 0.4, 0.4, 0.4, cost c = 2.

Figure 2: Average cumulative regret for MCCH vs. knowledge gradient, observe with probability 1/time � step,
DMED variant. The latter two algorithms do not take the query cost into account.

Figure 3: Bernoulli bandit with means 0.7, 0.5, 0.4, 0.4, 0.4, 0.4, and cost c = 2. DMED with a prespecified query
stopping time (left) and MCCH for different values of ↵ (right). MCCH is more robust to the choice of hyperparameter.

MDP Environments

Exploration

Figure 4: The chain environment used by Osband and Van Roy (2016); our version has deterministic transitions.

Avoidability

r = 1

r = 0

r = 0. . .r = 0r = 0
a2

a1

a2

a1

a2

a1

a2

a1

a1, a2

a1, a2

. . .

1

Figure 5: The long-Y environment. Ideally, the agent should only query the two rightmost states, since the other
states are unavoidable.

State-interdependent Value of Information

?1{0, �3}{0, �3}0a1 a2 a1 a1 a1

1

Figure 6: A 2-state “moat”. When the agent has a uniform (50-50) prior over the rewards of the middle states, it
must learn that both of them have reward 0 in order to seek out the goal state (with reward 1, in red). ? represents
the terminal state

MDP Experiments

Figure 7: Average cumulative regret per episode (top), average number of queries per episode (middle), and average
returns per episode (bottom) for different ARL algorithms in chain (left columns) and long-y (right columns)
environments, with standard error bars.

This work was supported by Future of Life Institute grant 2015-144847 (JS, DK, OE). We thank Andreas Stuhlmüller, Tor Lattimore,
Reimar Leike, Ryan Lowe, Akram Erraqabi, and Jessica Taylor for helpful discussions. The authors acknowledge the use of the University
of Oxford Advanced Research Computing (ARC) facility in carrying out this work.

MILA
INSTITUT

DES ALGORITHMES
D’APPRENTISSAGE

DE MONTRÉAL

Dominique Tessier / Territoires / Université de Montréal

logotype MILA - U.Montréal_14.03.16

Active Reinforcement Learning:
Observing Rewards at a Cost

David Krueger Jan Leike John Salvatier Owain Evans

What is Active Reinforcement Learning?

Figure 1: The Active RL agent-environment interface

The Active RL (ARL) problem:

• Agent chooses whether to observe reward Rt on time-step t

• Observing Rt has cost c

• Goal: maximize
P

t Rt � c qt, qt =

(
1 if Rtis observed
0 else

Details / clarifications:

• Reward is collected even when unobserved

• Agent chooses action At and whether to observe reward simultaneously

• Only Rt can be observed at time-step t

Motivations

Reward functions are complex

• Specifying a reward function

R : S ⇥ A ! R
is like specifying a classification function

f : image ! category.

This is too hard (for many tasks of interest)

• Idea: avoid specifying entire reward function by providing reward online

Active Learning is efficient

• Rewards ⇠ Labels: a form of supervision (bottleneck!)

• Goal: Maximum learning from minimum supervision

• Active (Supervised) Learning can be exponentially more efficient (sample complexity)

Active Bandits

Problem Characteristics

• Must pay to observe reward (even though it’s known to be suboptimal)

• Regret ⇠ ⇥(n2/3) (a “hard” partial monitoring problem (Piccolboni et al. 2001, Antos et al. 2013))

• No index strategy or greedy solution.

Algorithm: Mind-changing cost heuristic (MCCH)

• Front-load observations (Explore-then-exploit)

• Estimate # observations needed to move 2nd-best posterior to 1st-best (as m̂ := max{1, d2mini((Ti + 1)

ˆ

�i)
2e})

• Stop exploring (= observing Rt) when cm̂
↵ > expected regret of (apparent) best arm

MDP Algorithms

Basic Set-up

• Model-based RL with PSRL (aka Thompson Sampling)

• “observation policy”: chooses whether to observe Rt (based on model)

• “primary policy”: chooses actions (based on model AND observation policy)

• (optionally) update observation policy in-the-loop (ala PSRL)

Estimating observation policy performance: “(A)SQR”

• Compare observation policies (e.g. “query (s, a) on the first N visits”) via Monte Carlo rollouts

• Assumes all state-actions are equally valuable to observe =) problems with avoidability

Estimating V OI(s, a): “Greedy VOI”

• V OI(s, a) := performance improvement from knowing R(s, a)

• Observe R(s, a) iff V OI(s, a) > ↵c
#episodes remaining

• Assumes V OI(s, a) does not depend on other (s, a) =) problems with state-interdependent VOI

Bandit Experiments

(a) Means 0.8 and 0.5, cost c = 50. (b) Means 0.7, 0.5, 0.4, 0.4, 0.4, 0.4, cost c = 2.

Figure 2: Average cumulative regret for MCCH vs. knowledge gradient, observe with probability 1/time � step,
DMED variant. The latter two algorithms do not take the query cost into account.

Figure 3: Bernoulli bandit with means 0.7, 0.5, 0.4, 0.4, 0.4, 0.4, and cost c = 2. DMED with a prespecified query
stopping time (left) and MCCH for different values of ↵ (right). MCCH is more robust to the choice of hyperparameter.

MDP Environments

Exploration

Figure 4: The chain environment used by Osband and Van Roy (2016); our version has deterministic transitions.

Avoidability

r = 1

r = 0

r = 0. . .r = 0r = 0
a2

a1

a2

a1

a2

a1

a2

a1

a1, a2

a1, a2

. . .

1

Figure 5: The long-Y environment. Ideally, the agent should only query the two rightmost states, since the other
states are unavoidable.

State-interdependent Value of Information

?1{0, �3}{0, �3}0a1 a2 a1 a1 a1

1

Figure 6: A 2-state “moat”. When the agent has a uniform (50-50) prior over the rewards of the middle states, it
must learn that both of them have reward 0 in order to seek out the goal state (with reward 1, in red). ? represents
the terminal state

MDP Experiments

Figure 7: Average cumulative regret per episode (top), average number of queries per episode (middle), and average
returns per episode (bottom) for different ARL algorithms in chain (left columns) and long-y (right columns)
environments, with standard error bars.

This work was supported by Future of Life Institute grant 2015-144847 (JS, DK, OE). We thank Andreas Stuhlmüller, Tor Lattimore,
Reimar Leike, Ryan Lowe, Akram Erraqabi, and Jessica Taylor for helpful discussions. The authors acknowledge the use of the University
of Oxford Advanced Research Computing (ARC) facility in carrying out this work.

Overview
GOAL: agents that (a) learn policies aligned with human
preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

1. Hand-code reward function before learning.

2. Learn rewards or policy from demonstration (IRL or
imitation learning)

3. Human provides rewards online (TAMER, Active Reward
Learning).

Human H

Environment M

Agent L

s, ra

s, ra

Protocol Program P

Human-in-the-loop RL

Human teaching for any RL agent

Human H

Environment M

Agent L

s, ra

s, ra

Protocol Program P

reward shaping

feature design, pre-
processing

agent in simulationaction
pruning

Prevent Catastrophes with Interactive RL

Catastrophic action: action that RL agent should
essentially never take, i.e. P(action) < 𝜖

Examples:

breaking laws / moral rules

physically harm humans

manipulate or psychologically harm humans

Prevent Catastrophes with Interactive RL

Catastrophic action: action that RL agent should
never take, i.e. P(action) < 𝜖

Examples:

breaking laws / moral rules

physically harm humans

manipulate or psychologically harm humans

Prevent Catastrophes with human in loop

Related work: Safe RL and avoiding SREs (Moldovan and Abeel, Frank et al.,
Paul et. al, Lipton et al.)

Challenge:

Simulation often inadequate (esp. for extreme events)

RL agents learn by trial and error (don’t know R and T in
advance)

Solution: human blocks catastrophes before they happen

5

4

3

2

1 G

1 2 3 4 5

1. Human blocks agent trying bad action,

gives big negative reward.

2. Classifier learns to recognize bad actions

3. Classifier takes over human role.

4. (Human interactively defines a new MDP).

 

Problems: efficiency, robust generalization.

Prevent Catastrophes with human in loop

Human Preferences and Human Control for
Reinforcement Learners

Owain Evans
University of Oxford

FHI
GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/
exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

1. Hand-code reward function before learning.

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3. Human provides rewards online (TAMER, Active Reward Learning).

THANKS!

