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What we want from ML
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The agent alignment problem

How can we create agents that behave
in accordance with the user's intentions?
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“Preference payload” questions

e Whose preferences should
the agent be aligned to?

e How should preferences of
different users be
aggregated?

e How should they traded off
against each other?

e When should the agent be
disobedient?
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“Preference payload” questions

e Whose preferences should

When should the agent be
disobedient?

These questions are important.

We're not discussing these
questions here.

We're only considering the
technical problem of aligning
one agent to one user.
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Desiderata

Image sources:
https://www.porttechnology.org/
https://realanimetraining.com/
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Assumption 1

Rather than formally specifying user intentions,
we can instead learn these intentions
to a sufficiently high accuracy.
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Assumption 2

For many tasks, evaluation of outcomes
is easier than producing the correct behavior.
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Reward modeling

Reward model

'o‘b
A
<Q;
o
o
®
Agent 2
o
~+
g
o
=
%
\S‘GA
Q-
9,
(o] (}_
%

Environment

User

C DeepMind

@janleike



Reward modeling
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LETTER

Human-level control through deep reinforcement

learning
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Evaluation assistance tasks
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Recursive reward modeling

Reward model
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Challenges

Amount of feedback

Feedback distribution

Reward hacking

Unacceptable outcomes

Reward-result gap

© DeepMind @janleike



35000+ Hero 5000

Challenges

Amount of feedback

Montezuma's Revenge

g

Feedback distribution

Reward hacking —>

>

-5000

Mean episode return
Mean reward model return

0000 Private Eye

8
g

Unacceptable outcomes

Reward-result gap

-10000 , —--1000
0 200
Training time (hours)

© DeepMind @janleike



Challenges

Online feedback

Amount of feedback

Off-policy feedback
Leveraging existing data
Hierarchical feedback

Natural language

Model-based RL

Reward hacking

Side-constraints

Unacceptable outcomes *'-‘\‘\\\
\ N

\

Adversarial training

Uncertainty estimates

Reward-result gap

Inductive bias
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Establishing trust

Design choices
Testing

Interpretability

Formal verification
Theoretical guarantees

Safety certificates
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Thanks! :)

Blog post: https://goo.gl/azGMtA

Paper:
https://arxiv.org/abs/1811.07871
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Scalable agent alignment via reward modeling:
a research direction

Jan Leike David Krueger* Tom Everitt Miljan Martic  Vishal Maini Shane Legg
DeepMind DeepMind DeeoMind D . D . D 3

Mila
Abstract

One obstacle to applying reinforcement learning algorithms to real-world problems
is the lack of suitable reward i g such reward ions is difficult

Zn
in part because the user only has an implicit ing of the task obj 2
This gives rise to the agent alignment problem: how do we create agents that behave
in accordance with the user’s intentions? We outline a high-level research direction
to solve the agent alignment problem centered around reward modeling: learning a
reward function from interaction with the user and optimizing the learned reward
function with reinforcement learning. We discuss the key challenges we expect
to face when scaling reward modeling to complex and general domains, concrete
approaches to mitigate these challenges, and ways to establish trust in the resulting
agents.

1 Introduction

Games are a useful benchmark for research because progress is easily measurable. Atari games
come with a score function that captures how well the agent is playing the game; board games or
competitive multiplayer games such as Dota 2 and Starcraft IT have a clear winner or loser at the end
of the game. This helps us determine empirically which algorithmic and architectural improvements
work best.

However, the ultimate goal of machine learning (ML) research is to go beyond games and improve
human lives. To achieve this we need ML to assist us in real-world domains, ranging from simple
tasks like ordering food or answering emails to complex tasks like software engineering or running a
business. Yet performance on these and other real-world tasks is not easily measurable, since they do
not come readily equipped with a reward function. Instead, the objective of the task is only indirectly
available through the intentions of the human user.

This requires walking a fine line. On the one hand, we want ML to generate creative and brilliant
solutions like AlphaGo’s Move 37 (Metz, 2016)—a move that no human would have recommended,
yet it completely turned the game in AlphaGo’s favor. On the other hand, we want to avoid degenerate
solutions that lead to undesired behavior like exploiting a bug in the environment simulator (Clark &
Amodei, 2016; Lehman et al., 2018). In order to differentiate between these two outcomes, our agent
needs to understand its user’s intentions, and robustly achieve these intentions with its behavior. We
frame this as the agent alignment problem:

How can we create agents that behave in accordance with the user’s intentions?
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