
Jürgen Schmidhuber                               
The Swiss AI Lab IDSIA                                    
Univ. Lugano & SUPSI  
http://www.idsia.ch/~juergen 

Learning how to 
Learn Learning 
Algorithms: Recursive          
Self-Improvement 

NNAISENSE 



Jürgen Schmidhuber 
You_again Shmidhoobuh 



“True” Learning to 
Learn (L2L) is not just 

transfer learning! 
Even a simple  

feedforward NN can 
transfer-learn to learn 

new images faster 
through pre-training 
on other image sets 

True L2L is not just 
about learning to 
adjust a few hyper-
parameters such as 
mutation rates in 
evolution strategies 
(e.g., Rechenberg & 
Schwefel, 1960s) 



Radical L2L is about 
encoding the initial 

learning algorithm  in 
a universal language 

(e.g., on an RNN), 
with primitives that 
allow to modify the 

code itself in arbitrary 
computable fashion 

Then surround this 
self-referential, self-
modifying code by a 
recursive framework 
that ensures that 
only “useful” self-
modifications are 
executed or survive 
(RSI) 



J. Good (1965): informal 
remarks on an intelligence 

explosion through recursive 
self-improvement (RSI) for 

super-intelligences 
My concrete 
algorithms for RSI: 
1987, 93, 94, 2003 



R-learn & improve learning 
algorithm itself, and also the 
meta-learning algorithm, etc… 

My diploma thesis (1987): 
first concrete design of 
recursively self-improving AI 

http://people.idsia.ch/~juergen/metalearner.html 



Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP 
etc: J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning 

how to learn: The meta-meta-... hook. Diploma thesis, TU Munich 

http://people.idsia.ch/~juergen/diploma.html 



With Hochreiter (1997), Gers (2000), Graves, Fernandez, Gomez, Bayer… 

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now 

http://www.idsia.ch/~juergen/rnn.html 



http://www.idsia.ch/~juergen/rnn.html 

Separation of Storage and Control for NNs: End-to-End Differentiable Fast Weights 
(Schmidhuber, 1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981) 



1993: More elegant 
Hebb-inspired 

addressing to go 
from (#hidden) to 

(#hidden)2 temporal 
variables: gradient-
based RNN learns 
to control internal 

end-to-end 
differentiable 
spotlights of 

attention for fast 
differentiable 

memory rewrites – 
again fast weights  

Schmidhuber, 
ICANN 1993: 
Reducing the ratio 
between learning 
complexity and 
number of time-
varying variables in 
fully recurrent nets. 

Similar to NIPS 
2016 paper by 
Ba, Hinton, Mnih, 
Leibo, Ionesco 
 



2005: 
Reinforcement-

Learning or 
Evolving RNNs 

with Fast Weights 

Robot learns to 
balance 1 or 2 poles 
through 3D joint 

http://www.idsia.ch/~juergen/evolution.html 

Gomez & Schmidhuber: 
Co-evolving recurrent 
neurons learn deep 
memory POMDPs. 
GECCO 2005 



1993: Gradient-
based meta-
RNNs that can 
learn to run their 
own weight 
change 
algorithm:          
J.  Schmidhuber. 
A self-referential 
weight matrix. 
ICANN 1993 

This was before LSTM. In 2001, however, Sepp Hochreiter taught a meta-LSTM to 
learn a learning algorithm for quadratic functions that was faster than backprop  



E.g., Schmidhuber,  
Zhao, Wiering: MLJ 
28:105-130, 1997  

Success-story algorithm (SSA) for 
self-modifying code (since 1994) 

R(t)/t <                  
[R(t)-R(v1)] / (t-v1) <              
[R(t)-R(v2)] / (t-v2) <… 

R(t): Reward until time t. Stack of 
past check points v1v2v3 … with 
self-mods in between. SSA 
undoes selfmods after vi that are 
not followed by long-term reward 
acceleration up until t (now): 















1997: Lifelong 
meta-learning 
with self-
modifying policies 
and success-story 
algorithm: 2 
agents, 2 doors, 2 
keys. 1st 
southeast wins 5, 
the other 3. 
Through recursive 
self-modifications 
only: from 
300,000 steps per 
trial down to 
5,000. 



Universal problem solver Gödel machine 
uses self reference trick in a new way 

 

Kurt Gödel, father of theoretical computer 
science, exhibited the limits of math and 

computation (1931) by creating a formula 
that speaks about itself, claiming to be 

unprovable by a computational theorem 
prover: either formula is true but 

unprovable, or math is flawed in an 
algorithmic sense 



Gödel Machine (2003): 
agent-controlling program 
that speaks about itself, 
ready to rewrite itself in 
arbitrary fashion once it 
has found a proof that the 
rewrite is useful, given a 
user-defined utility function 

Theoretically optimal  
self-improver! 

goedelmachine.com 



Initialize Gödel Machine 
by Marcus Hutter‘s 

asymptotically fastest 
method for all well-

defined problems 

Given f:X→Y and x∈X, search proofs to find 
program q that provably computes f(z) for all 

z∈X within time bound tq(z); spend most time 
on f(x)-computing q with best current bound 

IDSIA 
2002 

on my 
SNF 

grant 

n3+101000=n3+O(1)    

As fast as fastest 
f-computer, save 
for factor 1+ε and 
f-specific const. 
independent of x!  



PowerPlay not only solves but also continually 
invents problems at the borderline between what's 

known and unknown - training an increasingly 
general problem solver by continually searching for 

the simplest still unsolvable problem 



now talking to investors 

neural networks-based 
artificial intelligence 



Reinforcement learning to park 
Cooperation NNAISENSE - AUDI 
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Super-deep program learner: 
Optimal Ordered Problem Solver 
OOPS (Schmidhuber, MLJ, 2004, 
extending Levin’s universal 
search, 1973)  
 
Time-optimal incremental search 
and algorithmic transfer learning 
in program space 
 
Branches of search tree are 
program prefixes 
 
Node-oriented backtracking  
restores partially solved task sets 
& modified memory components 
on error or when ∑ t > PT 



61 primitive instructions operating 
on stack-like and other internal 
data structures. For example:  
 
push1(), not(x), inc(x), add(x,y), 
div(x,y), or(x,y), exch_stack(m,n), 
push_prog(n), movstring(a,b,n), 
delete(a,n), find(x), define 
function(m,n), callfun(fn), 
jumpif(val,address), quote(), 
unquote(), 
boost_probability(n,val) …. 
 
Programs are integer sequences; 
data and code look the same; 
makes functional programming 
easy 



Towers of Hanoi: incremental solutions 
•  +1ms,   n=1:       (movdisk) 
•  1 day,   n=1,2:    (c4 c3 cpn c4 by2 c3 by2 exec) 
•  3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp) 
•  4 days: n=4, n=5, …, n=30:  by same double-recursive program 
•  Profits from 30 earlier context-free language tasks (1n2n): transfer learning 
•  93,994,568,009 prefixes tested 
•  345,450,362,522 instructions  
•  678,634,413,962 time steps 
•  longest single run: 33 billion steps (5% of total time)! Much deeper than 

recent memory-based “deep learners” … 
•  top stack size for restoring storage: < 20,000 



What the found Towers of Hanoi solver does: 
•  (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)     
•  Prefix increases P of double-recursive procedure: 

Hanoi(Source,Aux,Dest,n): IF n=0 exit;  ELSE BEGIN 
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest; 
Hanoi(Aux,Source,Dest,n-1); END            

•  Prefix boosts instructions of previoulsy frozen program, which happens to 
be a previously learned solver of a context-free language (1n2n). This 
rewrites search procedure itself: Benefits of metalearning! 

•  Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11 

•  Suffix probability without prefix execution: 4*10-14 

•  That is, Hanoi does profit from 1n2n experience and incremental learning 
(OOPS excels at algorithmic transfer learning): speedup factor 1000 



J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning      
with Recurrent Controller & Recurrent World Model 

Learning 
and 
planning 
with 
recurrent 
networks 



RNNAIssance   
2014-2015        

On Learning to 
Think: Algorithmic 

Information 
Theory for Novel 
Combinations of 

Reinforcement 
Learning RNN-

based Controllers 
(RNNAIs) and 

Recurrent Neural 
World Models 

http://arxiv.org/abs/1511.09249 




