
Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

Learning how to
Learn Learning
Algorithms: Recursive
Self-Improvement

NNAISENSE

Jürgen Schmidhuber
You_again Shmidhoobuh

“True” Learning to
Learn (L2L) is not just

transfer learning!
Even a simple

feedforward NN can
transfer-learn to learn

new images faster
through pre-training
on other image sets

True L2L is not just
about learning to
adjust a few hyper-
parameters such as
mutation rates in
evolution strategies
(e.g., Rechenberg &
Schwefel, 1960s)

Radical L2L is about
encoding the initial

learning algorithm in
a universal language

(e.g., on an RNN),
with primitives that
allow to modify the

code itself in arbitrary
computable fashion

Then surround this
self-referential, self-
modifying code by a
recursive framework
that ensures that
only “useful” self-
modifications are
executed or survive
(RSI)

J. Good (1965): informal
remarks on an intelligence

explosion through recursive
self-improvement (RSI) for

super-intelligences
My concrete
algorithms for RSI:
1987, 93, 94, 2003

R-learn & improve learning
algorithm itself, and also the
meta-learning algorithm, etc…

My diploma thesis (1987):
first concrete design of
recursively self-improving AI

http://people.idsia.ch/~juergen/metalearner.html

Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP
etc: J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning

how to learn: The meta-meta-... hook. Diploma thesis, TU Munich

http://people.idsia.ch/~juergen/diploma.html

With Hochreiter (1997), Gers (2000), Graves, Fernandez, Gomez, Bayer…

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now

http://www.idsia.ch/~juergen/rnn.html

http://www.idsia.ch/~juergen/rnn.html

Separation of Storage and Control for NNs: End-to-End Differentiable Fast Weights
(Schmidhuber, 1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981)

1993: More elegant
Hebb-inspired

addressing to go
from (#hidden) to

(#hidden)2 temporal
variables: gradient-
based RNN learns
to control internal

end-to-end
differentiable
spotlights of

attention for fast
differentiable

memory rewrites –
again fast weights

Schmidhuber,
ICANN 1993:
Reducing the ratio
between learning
complexity and
number of time-
varying variables in
fully recurrent nets.

Similar to NIPS
2016 paper by
Ba, Hinton, Mnih,
Leibo, Ionesco

2005:
Reinforcement-

Learning or
Evolving RNNs

with Fast Weights

Robot learns to
balance 1 or 2 poles
through 3D joint

http://www.idsia.ch/~juergen/evolution.html

Gomez & Schmidhuber:
Co-evolving recurrent
neurons learn deep
memory POMDPs.
GECCO 2005

1993: Gradient-
based meta-
RNNs that can
learn to run their
own weight
change
algorithm:
J. Schmidhuber.
A self-referential
weight matrix.
ICANN 1993

This was before LSTM. In 2001, however, Sepp Hochreiter taught a meta-LSTM to
learn a learning algorithm for quadratic functions that was faster than backprop

E.g., Schmidhuber,
Zhao, Wiering: MLJ
28:105-130, 1997

Success-story algorithm (SSA) for
self-modifying code (since 1994)

R(t)/t <
[R(t)-R(v1)] / (t-v1) <
[R(t)-R(v2)] / (t-v2) <…

R(t): Reward until time t. Stack of
past check points v1v2v3 … with
self-mods in between. SSA
undoes selfmods after vi that are
not followed by long-term reward
acceleration up until t (now):

1997: Lifelong
meta-learning
with self-
modifying policies
and success-story
algorithm: 2
agents, 2 doors, 2
keys. 1st
southeast wins 5,
the other 3.
Through recursive
self-modifications
only: from
300,000 steps per
trial down to
5,000.

Universal problem solver Gödel machine
uses self reference trick in a new way

Kurt Gödel, father of theoretical computer
science, exhibited the limits of math and

computation (1931) by creating a formula
that speaks about itself, claiming to be

unprovable by a computational theorem
prover: either formula is true but

unprovable, or math is flawed in an
algorithmic sense

Gödel Machine (2003):
agent-controlling program
that speaks about itself,
ready to rewrite itself in
arbitrary fashion once it
has found a proof that the
rewrite is useful, given a
user-defined utility function

Theoretically optimal
self-improver!

goedelmachine.com

Initialize Gödel Machine
by Marcus Hutter‘s

asymptotically fastest
method for all well-

defined problems

Given f:X→Y and x∈X, search proofs to find
program q that provably computes f(z) for all

z∈X within time bound tq(z); spend most time
on f(x)-computing q with best current bound

IDSIA
2002

on my
SNF

grant

n3+101000=n3+O(1)

As fast as fastest
f-computer, save
for factor 1+ε and
f-specific const.
independent of x!

PowerPlay not only solves but also continually
invents problems at the borderline between what's

known and unknown - training an increasingly
general problem solver by continually searching for

the simplest still unsolvable problem

now talking to investors

neural networks-based
artificial intelligence

Reinforcement learning to park
Cooperation NNAISENSE - AUDI

1.  J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.)

2.  J. Schmidhuber. A self-referential weight matrix. ICANN 1993
3.  J. Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994.
4.  J. Schmidhuber and J. Zhao and M. Wiering. Simple principles of metalearning. TR

IDSIA-69-96, 1996. (Based on 3.)
5.  J. Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with self-modifying

policies. In Learning to learn, Kluwer, pages 293-309, 1997. (Based on 3.)
6.  J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story

algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning
28:105-130, 1997. (Based on 3.)

7.  J. Schmidhuber. Gödel machines: Fully Self-Referential Optimal Universal Self-
Improvers. In Artificial General Intelligence, p. 119-226, 2006. (Based on TR of 2003.)

8.  T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
9.  More under http://people.idsia.ch/~juergen/metalearner.html

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

Learning how to
Learn Learning
Algorithms:
Extra Slides

NNAISENSE

Super-deep program learner:
Optimal Ordered Problem Solver
OOPS (Schmidhuber, MLJ, 2004,
extending Levin’s universal
search, 1973)

Time-optimal incremental search
and algorithmic transfer learning
in program space

Branches of search tree are
program prefixes

Node-oriented backtracking
restores partially solved task sets
& modified memory components
on error or when ∑ t > PT

61 primitive instructions operating
on stack-like and other internal
data structures. For example:

push1(), not(x), inc(x), add(x,y),
div(x,y), or(x,y), exch_stack(m,n),
push_prog(n), movstring(a,b,n),
delete(a,n), find(x), define
function(m,n), callfun(fn),
jumpif(val,address), quote(),
unquote(),
boost_probability(n,val) ….

Programs are integer sequences;
data and code look the same;
makes functional programming
easy

Towers of Hanoi: incremental solutions
•  +1ms, n=1: (movdisk)
•  1 day, n=1,2: (c4 c3 cpn c4 by2 c3 by2 exec)
•  3 days, n=1,2,3: (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
•  4 days: n=4, n=5, …, n=30: by same double-recursive program
•  Profits from 30 earlier context-free language tasks (1n2n): transfer learning
•  93,994,568,009 prefixes tested
•  345,450,362,522 instructions
•  678,634,413,962 time steps
•  longest single run: 33 billion steps (5% of total time)! Much deeper than

recent memory-based “deep learners” …
•  top stack size for restoring storage: < 20,000

What the found Towers of Hanoi solver does:
•  (c3 dec boostq defnp c4 calltp c3 c5 calltp endnp)
•  Prefix increases P of double-recursive procedure:

Hanoi(Source,Aux,Dest,n): IF n=0 exit; ELSE BEGIN
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest;
Hanoi(Aux,Source,Dest,n-1); END

•  Prefix boosts instructions of previoulsy frozen program, which happens to
be a previously learned solver of a context-free language (1n2n). This
rewrites search procedure itself: Benefits of metalearning!

•  Prefix probability 0.003; suffix probability 3*10-8; total probability 9*10-11

•  Suffix probability without prefix execution: 4*10-14

•  That is, Hanoi does profit from 1n2n experience and incremental learning
(OOPS excels at algorithmic transfer learning): speedup factor 1000

J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning
with Recurrent Controller & Recurrent World Model

Learning
and
planning
with
recurrent
networks

RNNAIssance
2014-2015

On Learning to
Think: Algorithmic

Information
Theory for Novel
Combinations of

Reinforcement
Learning RNN-

based Controllers
(RNNAIs) and

Recurrent Neural
World Models

http://arxiv.org/abs/1511.09249

