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Fooling a deep network(szegedy et al. 2013)

* Optimizing a delta from the image to maximize a class prediction fJc (x)
max-+A/ flc (I+A7)—A||A/)| T2

Shark (93.89% confidence)
Giant Panda (99.32% confidence)
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(Szegedy et al. 2013, Goodfellow et al. 2014, Nguyen et al. 2015)



Generalization of fooling

* Adversarial examples are not random
* They generalize across networks!
e Use one algorithm to generate perturbations and test on others (Luoet

al. 2016)
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Closer Examination of Perturbations

* Two networks used in analysis:

* AlexNet (2012 state-of-the-art, 16% error on ImageNet challenge)
* VGG Network (2014-2015 state-of-the-art, 7% error on ImageNet challenge)

* First part on VGG, second part on both
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Generate Insights: Explore at the End

No convolution anymore
Close to final output

Use PCA (NN = linear + transformation)
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PCA Dimension 2

Corruption Traces before the Fully-
Connected Layer

* Do a PCA on layer-14 features (after the last convolutional layer)
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Fundamental Aspect of ML

* Machine learning works only on the test data if it's sampled from the
same distribution with training data

* No good result expected on adversarial images Extrapolation
since never trained on it Area
* Solution?
* Enlarge training set (add adversarial examples)
(Goodfellow et al. 2014) Inter-
* Led to many GAN-type approaches polation

* Or just detect the boundary of training
distribution and refuse to work outside

Training examples



A conservative approach

* Never do extrapolation!

* Instead, identify intruder attempts for doing so

* Has been studied in machine learning, e.g. self-aware learning (Li et al. 2008)

* Instead of “adding adversarial examples back to training”

 Which never ends!
Extrapolatio

DANGER
ZONE!

polation

vulnerable!

Extrapolation
Area

Vs, Inter-
polation

Still



Back to Difference between Normal and
Adversarial Examples

Eigenvector Number vs. Extremal Value Normalized Standard Deviation
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How to observe distributional statistics
from a single image?

* An image is a distribution of pixels

* Each convolutional layer output is a distribution of pixels
* K-dimensional distribution on k filter outputs

* Try not to use features to train directly (overfitting!)

 Instead, collect statistics:
e Mean absolute value of normalized PCA coefficients

* Minimal and maximal values
e 25-th, 50-th and 75-th percentiles



Visualization: 2 types of adversarials

LBFGS-Adversarials (Nguyen et al. 2015)
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Visualization:

PCA Projected Value Conparison on AlexNet Layer 1

1.6

14}

Mean Value of PCA Projected Value

—— EA-adversarials
LBFGS-adversarials
MNormal

0.4

10 20 30 40 50 60 70 B0 20
Feature Indices

Mean Value of Max Extremal Value

0.7

0.6

0.5

0.4

0.3

0.2

Max Extremal Value Conparisen on AlexNet Layer 1

— EA-adversarials
LBFGS-adversarials
Normal

L I L A I | L L L

10 20 30 40 50 60 70 80 90
Feature Indices

Mean Value of 50 Percentile Value

Percentile 50 Value Conparison on AlexNet Layer 1

15

05|

— EA-adversarials

Normal

LBFGS-adversarials

I

=

\/

AF

ﬁ%

10 20 30 40 80 60 70 80 90

Feature Indices



Single-Layer Results

* Single-layer results are OK, not fantastic
* Imaginable with oversimplified features
* EA-Adversarials much easier to detect

Table 1. Classification Result with AlexNet for Normal vs. Table 2. Classification Result with VGG-16 for Normal vs.

LBFGS-adversarials [LBEGS-Adersarials
Network Layer 2nd 3rd 4th
Network Layer 2nd 3rd 4th Accuracy 721+0.7 84.1+0.7 80.3+0.6
Accuracy [ 575+£0.7  67.3£0.7 709+ 0.6 | [Nerwork Layer sh e o
Network Layer Sth 6th Accuracy | 81.4+£0.9 743+06 73.9+06
Accuracy 749+09 7895+£0.6 Network Layer 3th Oth 10th
Accuracy 74.2+07 T71.2+£0.7 743+£0.8

Table 3. Classification Result for Normal vs. EA-Adversarials
Layer 2nd 3rd 4th

Accuracy | 93.45£0.69 98.3+£0.73 97.9£0.57




Classifier Cascade

* Proposed by Viola-Jones in 2001 for face detection
* |dea: discard large amount of examples that are simple to classify
 Leave those hard to classify to the next (more expensive) stage
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Classifier Cascade

* 1 classifier for each convolutional layer

* Classify on layer 1:
* Normal: do not continue
* Unsure: go to layer 2
* Classify on layer 2...
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Result

LBFGS Adversarials EA-Adversarials
AlexNet: 83.3% Accuracy VGG: 90.7% Accuracy AlexNet: 97.3% Accuracy
90.7% AUC 93.5% AUC 98.2% AUC
10 Perfolrmance Compgrison 10 ROC 'of Cascade Mlethod 100 ROC ‘of Cascade Myethod
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Figure 7. (a) Comparison Between OpenMax detection Methods and Cascade Classifier: The blue curve represents the performace of
OpenMax Method, and green curve represents the perfornace for Cascade Classifier.(b) Overall ROC Performance Curve of Cascade
Classifier Trained on VGG-16 Network. (c¢) Overall ROC of data generated from EA-adversarials dataset on AlexNet.



Conclusion

» A different approach geared toward Al safety
* Conservative
* Avoids extrapolation

* Try to perform “distribution tests” to test whether an example comes from
input distribution

* Classifier cascades on convolutional filter statistics work well

* Future work:
* Generative Adversarial Network (GAN) -type approach to detect intrusion



Image Recovery for LBFGS-adversarials

* Insight: LBFGS adversarials attacks the extremal value of gradient
output

* This is very specific to manipulating pixels to lower the magnitude of
certain outputs

* One can counter even with simple average filtering

Approach Top-5 Accuracy
(Recovered Images)
Original Image (Non-corrupted) 86.5%
3 x 3 Average Filter 73.0%
5 x 5 Average Filter 68.0%
Foveation (Object Crop MP) [16] 82.6%




Another side of the story

Noise std = 16 Noise std = 32
bell pepper (946), score 0.848 bell pepper (946), score 0.841 bell pepper (946), score 0.531

Noise std = 40 Noise std = 48
bell pepper (946), score 0.294 cucumber, cuke (944), score 0.175

e |t's also not that hard
to contaminate CNN!




