Posts

FLI Podcast: On the Future of Computation, Synthetic Biology, and Life with George Church

Progress in synthetic biology and genetic engineering promise to bring advancements in human health sciences by curing disease, augmenting human capabilities, and even reversing aging. At the same time, such technology could be used to unleash novel diseases and biological agents which could pose global catastrophic and existential risks to life on Earth. George Church, a titan of synthetic biology, joins us on this episode of the FLI Podcast to discuss the benefits and risks of our growing knowledge of synthetic biology, its role in the future of life, and what we can do to make sure it remains beneficial. Will our wisdom keep pace with our expanding capabilities?

Topics discussed in this episode include:

  • Existential risk
  • Computational substrates and AGI
  • Genetics and aging
  • Risks of synthetic biology
  • Obstacles to space colonization
  • Great Filters, consciousness, and eliminating suffering

You can take a survey about the podcast here

Submit a nominee for the Future of Life Award here

 

Timestamps: 

0:00 Intro

3:58 What are the most important issues in the world?

12:20 Collective intelligence, AI, and the evolution of computational systems

33:06 Where we are with genetics

38:20 Timeline on progress for anti-aging technology

39:29 Synthetic biology risk

46:19 George’s thoughts on COVID-19

49:44 Obstacles to overcome for space colonization

56:36 Possibilities for “Great Filters”

59:57 Genetic engineering for combating climate change

01:02:00 George’s thoughts on the topic of “consciousness”

01:08:40 Using genetic engineering to phase out voluntary suffering

01:12:17 Where to find and follow George

 

Citations: 

George Church’s Twitter and website

 

This podcast is possible because of the support of listeners like you. If you found this conversation to be meaningful or valuable consider supporting it directly by donating at futureoflife.org/donate. Contributions like yours make these conversations possible.

All of our podcasts are also now on Spotify and iHeartRadio! Or find us on SoundCloudiTunesGoogle Play and Stitcher.

You can listen to the podcast above or read the transcript below. 

Lucas Perry: Welcome to the Future of Life Institute Podcast. I’m Lucas Perry. Today we have a conversation with Professor George Church on existential risk, the evolution of computational systems, synthetic-bio risk, aging, space colonization, and more. We’re skipping the AI Alignment Podcast episode this month, but I intend to have it resume again on the 15th of June. Some quick announcements for those unaware, there is currently a live survey that you can take about the FLI and AI Alignment Podcasts. And that’s a great way to voice your opinion about the podcast, help direct its evolution, and provide feedback for me. You can find a link for that survey on the page for this podcast or in the description section of wherever you might be listening. 

The Future of Life Institute is also in the middle of its search for the 2020 winner of the Future of Life Award. The Future of Life Award is a $50,000 prize that we give out to an individual who, without having received much recognition at the time of their actions, has helped to make today dramatically better than it may have been otherwise. The first two recipients of the Future of Life Institute award were Vasili Arkhipov and Stanislav Petrov, two heroes of the nuclear age. Both took actions at great personal risk to possibly prevent an all-out nuclear war. The third recipient was Dr. Matthew Meselson, who spearheaded the international ban on bioweapons. Right now, we’re not sure who to give the 2020 Future of Life Award to. That’s where you come in. If you know of an unsung hero who has helped to avoid global catastrophic disaster, or who has done incredible work to ensure a beneficial future of life, please head over to the Future of Life Award page and submit a candidate for consideration. The link for that page is on the page for this podcast or in the description of wherever you might be listening. If your candidate is chosen, you will receive $3,000 as a token of our appreciation. We’re also incentivizing the search via MIT’s successful red balloon strategy, where the first to nominate the winner gets $3,000 as mentioned, but there are also tiered pay outs to the person who invited the nomination winner, and so on. You can find details about that on the page. 

George Church is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and MIT. He is Director of the U.S. Department of Energy Technology Center and Director of the National Institutes of Health Center of Excellence in Genomic Science. George leads Synthetic Biology at the Wyss Institute, where he oversees the directed evolution of molecules, polymers, and whole genomes to create new tools with applications in regenerative medicine and bio-production of chemicals. He helped initiate the Human Genome Project in 1984 and the Personal Genome Project in 2005. George invented the broadly applied concepts of molecular multiplexing and tags, homologous recombination methods, and array DNA synthesizers. His many innovations have been the basis for a number of companies including Editas, focused on gene therapy, Gen9bio, focused on Synthetic DNA, and Veritas Genetics, which is focused on full human genome sequencing. And with that, let’s get into our conversation with George Church.

So I just want to start off here with a little bit of a bigger picture about what you care about most and see as the most important issues today.

George Church: Well, there’s two categories of importance. One are things that are very common and so affect many people. And then there are things that are very rare but very impactful nevertheless. Those are my two top categories. They weren’t when I was younger. I didn’t consider either of them that seriously. So examples of very common things are age-related diseases, infectious diseases. They can affect all 7.7 billion of us. Then on the rare end would be things that could wipe out all humans or all civilization or all living things, asteroids, supervolcanoes, solar flares, and engineered or costly natural pandemics. So those are things that I think are very important problems. Then we have had the research to enhance wellness and minimize those catastrophes. The third category or somewhat related to those two which is things we can do to say get us off the planet, so things would be highly preventative from total failure.

Lucas Perry: So in terms of these three categories, how do you see the current allocation of resources worldwide and how would you prioritize spending resources on these issues?

George Church: Well the current allocation of resources is very different from the allocations that I would set for my own research goals and what I would set for the world if I were in charge, in that there’s a tendency to be reactive rather than preventative. And this applies to both therapeutics versus preventatives and the same thing for environmental and social issues. All of those, we feel like it somehow makes sense or is more cost-effective, but I think it’s an illusion. It’s far more cost-effective to do many things preventatively. So, for example, if we had preventatively had a system of extensive testing for pathogens, we could probably save the world trillions of dollars on one disease alone with COVID-19. I think the same thing is true for global warming. A little bit of preventative environmental engineering for example in the Arctic where relatively few people would be directly engaged, could save us disastrous outcomes down the road.

So I think we’re prioritizing a very tiny fraction for these things. Aging and preventative medicine is maybe a percent of the NIH budget, and each institute sets aside about a percent to 5% on preventative measures. Gene therapy is another one. Orphan drugs, very expensive therapies, millions of dollars per dose versus genetic counseling which is now in the low hundreds, soon will be double digit dollars per lifetime.

Lucas Perry: So in this first category of very common widespread issues, do you have any other things there that you would add on besides aging? Like aging seems to be the kind of thing in culture where it’s recognized as an inevitability so it’s not put on the list of top 10 causes of death. But lots of people who care about longevity and science and technology and are avant-garde on these things would put aging at the top because they’re ambitious about reducing it or solving aging. So are there other things that you would add to that very common widespread list, or would it just be things from the top 10 causes of mortality?

George Church: Well infection was the other one that I included in the original list in common diseases. Infectious diseases are not so common in the wealthiest parts of the world, but they are still quite common worldwide, HIV, TB, malaria are still quite common, millions of people dying per year. Nutrition is another one that tends to be more common in the four parts of the world that still results in death. So the top three would be aging-related.

And even if you’re not interested in longevity and even if you believe that aging is natural, in fact some people think that infectious diseases and nutritional deficiencies are natural. But putting that aside, if we’re attacking age-related diseases, we can use preventative medicine and aging insights into reducing those. So even if you want to neglect longevity that’s unnatural, if you want to address heart disease, strokes, lung disease, falling down, infectious disease, all of those things might be more easily addressed by aging studies and therapies and preventions than by a frontal assault on each micro disease one at a time.

Lucas Perry: And in terms of the second category, existential risk, if you were to rank order the likelihood and importance of these existential and global catastrophic risks, how would you do so?

George Church: Well you can rank their probability based on past records. So, we have some records of supervolcanoes, solar activity, and asteroids. So that’s one way of calculating probability. And then you can also calculate the impact. So it’s a product, the probability and impact for the various kinds of recorded events. I mean I think they’re similar enough that I’m not sure I would rank order those three.

And then pandemics, whether natural or human-influenced, probably a little more common than those first three. And then climate change. There are historic records but it’s not clear that they’re predictive. The probability of an asteroid hitting probably is not influenced by human presence, but climate change probably is and so you’d need a different model for that. But I would say that that is maybe the most likely of the lot for having an impact.

Lucas Perry: Okay. The Future of Life Institute, the things that we’re primarily concerned about in terms of this existential risk category would be the risks from artificial general intelligence and superintelligence, also synthetic bio-risk coming up in the 21st century more and more, and then accidental nuclear war would also be very bad, maybe not an existential risk. That’s arguable. Those are sort of our central concerns in terms of the existential risk category.

Relatedly the Future of Life Institute sees itself as a part of the effective altruism community which when ranking global priorities, they have four areas of essential consideration for impact. The first is global poverty. The second is animal suffering. And the third is long-term future and existential risk issues, having to do mainly with anthropogenic existential risks. The fourth one is meta-effective altruism. So I don’t want to include that. They also tend to make the same ranking, being that mainly the long-term risks of advanced artificial intelligence are basically the key issues that they’re worried about.

How do you feel about these perspectives or would you change anything?

George Church: My feeling is that natural intelligence is ahead of artificial intelligence and will stay there for quite a while, partly because synthetic biology has a steeper slope and I’m including the enhanced natural intelligence in the synthetic biology. That has a steeper upward slope than totally inorganic computing now. But we can lump those together. We can say artificial intelligence writ large to include anything that our ancestors didn’t have in terms of intelligence, which could include enhancing our own intelligence. And I think especially should include corporate behavior. Corporate behavior is a kind of intelligence which is not natural, is wide spread, and it is likely to change, mutate, evolve very rapidly, faster than human generation times, probably faster than machine generation times.

Nukes I think are aging and maybe are less attractive as a defense mechanism. I think they’re being replaced by intelligence, artificial or otherwise, or collective and synthetic biology. I mean I think that if you wanted to have mutually assured destruction, it would be more cost-effective to do that with syn-bio. But I would still keep it on the list.

So I agree with that list. I’d just like nuanced changes to where the puck is likely to be going.

Lucas Perry: I see. So taking into account and reflecting on how technological change in the short to medium term will influence how one might want to rank these risks.

George Church: Yeah. I mean I just think that a collective human enhanced intelligence is going to be much more disruptive potentially than AI is. That’s just a guess. And I think that nukes will just be part of a collection of threatening things that people do. Probably it’s more threatening to cause collapse of a electric grid or a pandemic or some other economic crash than nukes.

Lucas Perry: That’s quite interesting and is very different than the story that I have in my head, and I think will also be very different than the story that many listeners have in their heads. Could you expand and unpack your timelines and beliefs about why you think the\at collective organic intelligence will be ahead of AI? Could you say, I guess, when you would expect AI to surpass collective bio intelligence and some of the reasons again for why?

George Church: Well, I don’t actually expect silicon-based intelligence to ever bypass in every category. I think it’s already super good at storage retrieval and math. But that’s subject to change. And I think part of the assumptions have been that we’ve been looking at a Moore’s law projection while most people haven’t been looking at the synthetic biology equivalent and haven’t noticed that the Moore’s law might finally be plateauing, at least as it was originally defined. So that’s part of the reason I think for the excessive optimism, if you will, about artificial intelligence.

Lucas Perry: The Moore’s law thing has to do with hardware and computation, right?

George Church: Yeah.

Lucas Perry: That doesn’t say anything about how algorithmic efficiency and techniques and tools are changing, and the access to big data. Something we’ve talked about on this podcast before is that many of the biggest insights and jumps in deep learning and neural nets haven’t come from new techniques but have come from more massive and massive amounts of compute on data.

George Church: Agree, but those data are also available to humans as big data. I think maybe the compromise here is that it’s some hybrid system. I’m just saying that humans plus big data plus silicon-based computers, even if they stay flat in hardware is going to win over either one of them separately. So maybe what I’m advocating is hybrid systems. Just like in your brain you have different parts of your brain that have different capabilities and functionality. In a hybrid system we would have the wisdom of crowds, plus compute engines, plus big data, but available to all the parts of the collective brain.

Lucas Perry: I see. So it’s kind of like, I don’t know if this is still true, but I think at least at some point it was true, that the best teams at chess were AIs plus humans?

George Church: Correct, yeah. I think that’s still true. But I think it will become even more true if we start altering human brains, which we have a tendency to try to do already via education and caffeine and things like that. But there’s really no particular limit to that.

Lucas Perry: I think one of the things that you said was that you don’t think that AI alone will ever be better than biological intelligence in all ways.

George Church: Partly because biological intelligence is a moving target. The first assumption was that the hardware would keep improving on Moore’s law, which it isn’t. The second assumption was that we would not alter biological intelligence. There’s one moving target which was silicon and biology was not moving, when in fact biology is moving at a steeper slope both in terms of hardware and algorithms and everything else and we’re just beginning to see that. So I think that when you consider both of those, it at least sows the seed of uncertainty as to whether AI is inevitably better than a hybrid system.

Lucas Perry: Okay. So let me just share the kind of story that I have in my head and then you can say why it might be wrong. AI researchers have been super wrong about predicting how easy it would be to make progress on AI in the past. So taking predictions with many grains of salt, if you interview say the top 100 AI researchers in the world, they’ll give a 50% probability of there being artificial general intelligence by 2050. That could be very wrong. But they gave like a 90% probability of there being artificial general intelligence by the end of the century.

And the story in my head says that I expect there to be bioengineering and genetic engineering continuing. I expect there to be designer babies. I expect there to be enhancements to human beings further and further on as we get into the century in increasing capacity and quality. But there are computational and substrate differences between computers and biological intelligence like the clock speed of computers can be much higher. They can compute much faster. And then also there’s this idea about the computational architectures in biological intelligences not being privileged or only uniquely available to biological organisms such that whatever the things that we think are really good or skillful or they give biological intelligences a big edge on computers could simply be replicated in computers.

And then there is an ease of mass manufacturing compute and then emulating those systems on computers such that the dominant and preferable form of computation in the future will not be on biological wetware but will be on silicon. And for that reason at some point there’ll just be a really big competitive advantage for the dominant form of compute and intelligence and life on the planet to be silicon based rather than biological based. What is your reaction to that?

George Church: You very nicely summarized what I think is a dominant worldview of people that are thinking about the future, and I’m happy to give a counterpoint. I’m not super opinionated but I think it’s worthy of considering both because the reason we’re thinking about the future is we don’t want to be blind sighted by it. And this could be happening very quickly by the way because both revolutions are ongoing as is the merger.

Now clock speed, my guess is that clock speed may not be quite as important as energy economy. And that’s not to say that both systems, let’s call them bio and non-bio, can’t optimize energy. But if you look back at sort of the history of evolution on earth, the fastest clock speeds, like bacteria and fruit flies, aren’t necessarily more successful in any sense than humans. They might have more bio mass, but I think humans are the only species with our slow clock speed relative to bacteria that are capable of protecting all of the species by taking us to a new planet.

And clock speed is only important if you’re in a direct competition in a fairly stable environment where the fastest bacteria win. But worldwide most of the bacteria are actually very slow growers. If you look at energy consumption right now, which both of them can improve, there are biological compute systems that are arguably a million times more energy-efficient at even tasks where the biological system wasn’t designed or evolved for that task, but it can kind of match. Now there are other things where it’s hard to compare, either because of the intrinsic advantage that either the bio or the non-bio system has, but where they are sort of on the same framework, it takes 100 kilowatts of power to run say Jeopardy! and Go on a computer and the humans that are competing are using considerably less than that, depending on how you calculate all the things that is required to support the 20 watt brain.

Lucas Perry: What do you think the order of efficiency difference is?

George Church: I think it’s a million fold right now. And this largely a hardware thing. I mean there is algorithmic components that will be important. But I think that one of the advantages that bio chemical systems have is that they are intrinsically atomically precise. While Moore’s law seem to be plateauing somewhere around 3 nanometer fabrication resolution, that’s off by maybe a thousand fold from atomic resolution. So that’s one thing, that as you go out many years, they will either be converging on or merging in some ways so that you get the advantages of atomic precision, the advantages of low energy and so forth. So that’s why I think that we’re moving towards a slightly more molecular future. It may not be recognizable as either our silicon von Neumann or other computers, nor totally recognizable as a society of humans.

Lucas Perry: So is your view that we won’t reach artificial general intelligence like the kind of thing which can reason about as well as about humans across all the domains that humans are able to reason? We won’t reach that on non-bio methods of computation first?

George Church: No, I think that we will have AGI in a number of different substrates, mechanical, silicon, quantum computing. Various substrates will be able of doing artificial general intelligence. It’s just that the ones that do it in a most economic way will be the ones that we will tend to use. There’ll be some cute museum that will have a collection of all the different ways, like the tinker toy computer that did Tic Tac Toe. Well, that’s in a museum somewhere next to Danny Hillis, but we’re not going to be using that for AGI. And I think there’ll be a series of artifacts like that, that in practice it will be very pragmatic collection of things that make economic sense.

So just for example, its easier to make a copy of a biological brain. Now that’s one thing that appears to be an advantage to non-bio computers right now, is you can make a copy of even large data sets for a fairly small expenditure of time, cost, and energy. While, to educate a child takes decades and in the end you don’t have anything totally resembling the parents and teachers. I think that’s subject to change. For example, we have now storage of data in DNA form, which is about a million times denser than any comprable non-chemical, non-biological system, and you can make a copy of it for hundreds of joules of energy and pennies. So you can hold an exabyte of data in the palm of your hand and you can make a copy of it relatively easy.

Now that’s not a mature technology, but it shows where we’re going. If we’re talking 100 years, there’s no particular reason why you couldn’t have that embedded in your brain and input and output to it. And by the way, the cost of copying that is very close to the thermodynamic limit for making copies of bits, while computers are nowhere near that. They’re off by a factor of a million.

Lucas Perry: Let’s see if I get this right. Your view is that there is this computational energy economy benefit. There is this precisional element which is of benefit, and that because there are advantages to biological computation, we will want to merge the best aspects of biological computation with non-biological in order to sort of get best of both worlds. So while there may be many different AGIs on offer on different substrates, the future looks like hybrids.

George Church: Correct. And it’s even possible that silicon is not in the mix. I’m not predicting that it’s not in the mix. I’m just saying it’s possible. It’s possible that an atomically precise computer is better at quantum computing or is better at clock time or energy.

Lucas Perry: All right. So I do have a question later about this kind of thing and space exploration and reducing existential risk via further colonization which I do want to get into later. I guess I don’t have too much more to say about our different stories around here. I think that what you’re saying is super interesting and challenging in very interesting ways. I guess the only thing I would have to say is I guess I don’t know enough, but you said that the computation energy economy is like a million fold more efficient.

George Church: That’s for copying bits, for DNA. For doing complex tasks for example, Go, Jeopardy! or Einstein’s Mirabilis, those kinds of things were typically competing a 20 watt brain plus support structure with a 100 kilowatt computer. And I would say at least in the case of Einstein’s 1905 we win, even though we lose at Go and Jeopardy!, which is another interesting thing, is that humans have a great deal more of variability. And if you take the extreme values like one person in one year, Einstein in 1905 as the representative rather than the average person and the average year for that person, well, if you make two computers, they are going to likely be nearly identical, which is both a plus and a minus in this case. Now if you make Einstein in 1905 the average for humans, then you have a completely different set of goalpost for the AGI than just being able to pass a basic Turing test where you’re simulating someone of average human interest and intelligence.

Lucas Perry: Okay. So two things from my end then. First is, do you expect AGI to first come from purely non-biological silicon-based systems? And then the second thing is no matter what the system is, do you still see the AI alignment problem as the central risk from artificial general intelligence and superintelligence, which is just aligning AIs with human values and goals and intentions?

George Church: I think the further we get from human intelligence, the harder it is to convince ourselves that we can educate, and whereas the better they will be at fooling us. It doesn’t mean they’re more intelligent than us. It’s just they’re alien. It’s like a wolf can fool us when we’re out in the woods.

Lucas Perry: Yeah.

George Church: So I think that exceptional humans are as hard to guarantee that we really understand their ethics. So if you have someone who is a sociopath or high functioning autistic, we don’t really know after 20 years of ethics education whether they actually are thinking about it the same way we are, or even in compatible way to the way that we are. We being in this case neurotypicals, although I’m not sure I am one. But anyway.

I think that this becomes a big problem with AGI, and it may actually put a damper on it. Part of the assumption so far is we won’t change humans because we have to get ethics approval for changing humans. But we’re increasingly getting ethics approval for changing humans. I mean gene therapies are now approved and increasing rapidly, all kinds of neuro-interfaces and so forth. So I think that that will change.

Meanwhile, the silicon-based AGI as we approached it, it will change in the opposite direction. It will be harder and harder to get approval to do manipulations in those systems, partly because there’s risk, and partly because there’s sympathy for the systems. Right now there’s very little sympathy for them. But as you got to the point where computers haven an AGI level of say IQ of 70 or something like that for a severely mentally disabled person so it can pass the Turing test, then they should start getting the rights of a disabled person. And once they have the rights of a disabled person, that would include the right to not be unplugged and the right to vote. And then that creates a whole bunch of problems that we won’t want to address, except as academic exercises or museum specimens that we can say, hey, 50 years ago we created this artificial general intelligence, just like we went to the Moon once. They’d be stunts more than practical demonstrations because they will have rights and because it will represent risks that will not be true for enhanced human societies.

So I think more and more we’re going to be investing in enhanced human societies and less and less in the uncertain silicon-based. That’s just a guess. It’s based not on technology but on social criteria.

Lucas Perry: I think that it depends what kind of ethics and wisdom that we’ll have at that point in time. Generally I think that we may not want to take conventional human notions of personhood and apply them to things where it might not make sense. Like if you have a system that doesn’t mind being shut off, but it can be restarted, why is it so unethical to shut it off? Or if the shutting off of it doesn’t make it suffer, suffering may be some sort of high level criteria.

George Church: By the same token you can make human beings that don’t mind being shut off. That won’t change our ethics much I don’t think. And you could also make computers that do mind being shut off, so you’ll have this continuum on both sides. And I think we will have sympathetic rules, but combined with the risk, which is the risk that they can hurt you, the risk that if you don’t treat them with respect, they will be more likely to hurt you, the risk that you’re hurting them without knowing it. For example, if you have somebody with locked-in syndrome, you could say, “Oh, they’re just a vegetable,” or you could say, “They’re actually feeling more pain than I am because they have no agency, they have no ability to control their situation.”

So I think creating computers that could have the moral equivalent of locked-in syndrome or some other pain without the ability to announce their pain could be very troubling to us. And we would only overcome it if that were a solution to an existential problem or had some gigantic economic benefit. I’ve already called that into question.

Lucas Perry: So then, in terms of the first AGI, do you have a particular substrate that you imagine that coming online on?

George Church: My guess is it will probably be very close to what we have right now. As you said, it’s going to be algorithms and databases and things like that. And it will be probably at first a stunt, in the same sense that Go and Jeopardy! are stunts. It’s not clear that those are economically important. A computer that could pass the Turing test, it will make a nice chat bots and phone answering machines and things like that. But beyond that it may not change our world, unless we solve energy issues and so. So I think to answer your question, we’re so close to it now that it might be based on an extrapolation of current systems.

Quantum computing I think is maybe a more special case thing. Just because it’s good at encryption, encryption is very societal utility. I haven’t yet seen encryption described as something that’s mission critical for space flight or curing diseases, other than the social components of those. And quantum simulation may be beaten by building actual quantum systems. So for example, atomically precise systems that you can build with synthetic biology are quantum systems that are extraordinarily hard to predict, but they’re very easy to synthesize and measure.

Lucas Perry: Is your view here that if the first AGI is on the economic and computational scale of a supercomputer such that we imagine that we’re still just leveraging really, really big amounts of data and we haven’t made extremely efficient advancements and algorithms such that the efficiency jumps a lot but rather the current trends continue and it’s just more and more data and maybe some algorithmic improvements, that the first system is just really big and clunky and expensive, and then that thing can self-recursively try to make itself cheaper, and then that the direction that that would move in would be increasingly creating hardware which has synthetic bio components.

George Church: Yeah, I’d think that that already exists in a certain sense. We have a hybrid system that is self-correcting, self-improving at an alarming rate. But it is a hybrid system. In fact, it’s such a complex hybrid system that you can’t point to a room where it can make a copy of itself. You can’t even point to a building, possibly not even a state where you can make a copy of this self-modifying system because it involves humans, it involves all kinds of fab labs scattered around the globe.

We could set a goal to be able to do that, but I would argue we’re much closer to achieving that goal with a human being. You can have a room where you only can make a copy of a human, and if that is augmentable, that human can also make computers. Admittedly it would be a very primitive computer if you restricted that human to primitive supplies and a single room. But anyway, I think that’s the direction we’re going. And we’re going to have to get good at doing things in confined spaces because we’re not going to be able to easily duplicate planet Earth, probably going to have to make a smaller version of it and send it off and how big that is we can discuss later.

Lucas Perry: All right. Cool. This is quite perspective shifting and interesting, and I will want to think about this more in general going forward. I want to spend just a few minutes on this next question. I think it’ll just help give listeners a bit of overview. You’ve talked about it in other places. But I’m generally interested in getting a sense of where we currently stand with the science of genetics in terms of reading and interpreting human genomes, and what we can expect on the short to medium term horizon in human genetic and biological sciences for health and longevity?

George Church: Right. The short version is that we have gotten many factors of 10 improvement in speed, cost, accuracy, and interpretability, 10 million fold reduction in price from $3 billion for a poor quality genomic non-clinical quality sort of half a genome in that each of us have two genomes, one from each parent. So we’ve gone from $3 billion to $300. It will probably be $100 by the middle of year, and then will keep dropping. There’s no particular second law of thermodynamics or Heisenberg stopping us, at least for another million fold. That’s where we are in terms of technically being able to read and for that matter write DNA.

But the interpretation certainly there are genes that we don’t know what they do, there are disease that we don’t know what causes them. There’s a great vast amount of ignorance. But that ignorance may not be as impactful as sometimes we think. It’s often said that common diseases or so called complex multi-genic diseases are off in the future. But I would reframe that slightly for everyone’s consideration, that many of these common diseases are diseases of aging. Not all of them but many, many of them that we care about. And it could be that attacking aging as a specific research program may be more effective than trying to list all the millions of small genetic changes that has small phenotypic effects on these complex diseases.

So that’s another aspect of the interpretation where we don’t necessarily have to get super good at so called polygenic risk scores. We will. We are getting better at it, but it could be in the end a lot of the things that we got so excited about precision medicine, and I’ve been one of the champions of precision medicine since before it was called that. But precision medicine has a potential flaw in it, which is it’s the tendency to work on the reactive cures for specific cancers and inherited diseases and so forth when the preventative form of it which could be quite generic and less personalized might be more cost-effective and humane.

So for example, taking inherited diseases, we have a million to multi-million dollars spent on people having inherited diseases per individual, while a $100 genetic diagnosis could be used to prevent that. And generic solutions like aging reversal or aging prevention might stop cancer more effectively than trying to stop it once it gets to metastatic stage, which there is a great deal of resources put into that. That’s my update on where genomics is. There’s a lot more that could be said.

Lucas Perry:

Yeah. As a complete lay person in terms of biological sciences, stopping aging to me sounds like repairing and cleaning up human DNA and the human genome such that information that is lost over time is repaired. Correct me if I’m wrong or explain a little bit about what the solution to aging might look like.

George Church: I think there’s two kind of closer related schools of thought which one is that there’s damage that you need to go in there and fix the way you would fix a pothole. And the other is that there’s regulation that informs the system how to fix itself. I believe in both. I tend to focus on the second one.

If you take a very young cell, say a fetal cell. It has a tendency to repair much better than an 80-year-old adult cell. The immune system of a toddler is much more capable than that of a 90-year-old. This isn’t necessarily due to damage. This is due to the epigenetic so called regulation of the system. So one cell is convinced that it’s young. I’m going to use some anthropomorphic terms here. So you can take an 80-year-old cell, actually up to 100 years is now done, reprogram it into an embryo like state through for example Yamanaka factors named after Shinya Yamanaka. And that reprogramming resets many, not all, of the features such that it now behaves like a young non-senescent cell. While you might have taken it from a 100-year-old fibroblast that would only replicate a few times before it senesced and died.

Things like that seem to convince us that aging is reversible and you don’t have to micromanage it. You don’t have to go in there and sequence the genome and find every bit of damage and repair it. The cell will repair itself.

Now there are some things like if you delete a gene it’s gone unless you have a copy of it, in which case you could copy it over. But those cells will probably die off. And the same thing happens in the germline when you’re passing from parent to kid, those sorts of things that can happen and the process of weeding them out is not terribly humane right now.

Lucas Perry: Do you have a sense or timelines on progress of aging throughout the century?

George Church: There’s been a lot of wishful thinking for centuries on this topic. But I think we have a wildly different scenario now, partly because this exponential improvement in technologies, reading and writing DNA and the list goes on and on in cell biology and so forth. So I think we suddenly have a great deal of knowledge of causes of aging and ways to manipulate those to reverse it. And I think these are all exponentials and we’re going to act on them very shortly.

We already are seeing some aging drugs, small molecules that are in clinical trials. My lab just published a combination gene therapy that will hit five different diseases of aging in mice and now it’s in clinical trials in dogs and then hopefully in a couple of years it will be in clinical trials in humans.

We’re not talking about centuries here. We’re talking about the sort of time that it takes to get things through clinical trails, which is about a decade. And a lot of stuff going on in parallel which then after one decade of parallel trials would be merging into combined trials. So a couple of decades.

Lucas Perry: All right. So I’m going to get in trouble in here if I don’t talk to you about synthetic bio risk. So, let’s pivot into that. What are your views and perspectives on the dangers to human civilization that an increasingly widespread and more advanced science of synthetic biology will pose?

George Church: I think it’s a significant risk. Getting back to the very beginning of our conversation, I think it’s probably one of the most significant existential risks. And I think that preventing it is not as easy as nukes. Not that nukes are easy, but it’s harder. Partly because it’s becoming cheaper and the information is becoming more widespread.

But it is possible. Part of it depends on having many more positive societally altruistic do gooders than do bad. It would be helpful if we could also make a big impact on poverty and diseases associated poverty and psychiatric disorders. The kind of thing that causes unrest and causes dissatisfaction is what tips the balance where one rare individual or a small team will do something that otherwise it would be unthinkable for even them. But if they’re sociopaths or they are representing a disadvantaged category of people then they feel justified.

So we have to get at some of those core things. It would also be helpful if we were more isolated. Right now we are very well mixed pot, which puts us both at risk for natural, as well as engineered diseases. So if some of us lived in sealed environments on Earth that are very similar to the sealed environments that we would need in space, that would both prepare us for going into space. And some of them would actually be in space. And so the further we are away from the mayhem of our wonderful current society, the better. If we had a significant fraction of population that was isolated, either on earth or elsewhere, it would lower the risk of all of us dying.

Lucas Perry: That makes sense. What are your intuitions about the offense/defense balance on synthetic bio risk? Like if we have 95% to 98% synthetic bio do gooders and a small percentage of malevolent actors or actors who want more power, how do you see the relative strength and weakness of offense versus defense?

George Church: I think as usual it’s a little easier to do offense. It can go back and forth. Certainly it seems easier to defend yourself from a ICBM than from something that could be spread in a cough. And we’re seeing that in spades right now. I think the fraction of white hats versus black hats is much better than 98% and it has to be. It has to be more like a billion to one. And even then it’s very risky. But yeah, it’s not easy to protect.

Now you can do surveillance so that you can restrict research as best you can, but it’s a numbers game. It’s combination of removing incentives, adding strong surveillance, whistleblowers that are not fearful of false positives. The suspicious package in the airport should be something you look at, even though most of them are not actually bombs. We should tolerate a very high rate of false positives. But yes, surveillance is not something we’re super good at it. It falls in the category of preventative medicine. And we would far prefer to do reactive, is to wait until somebody releases some pathogen and then say, “Oh, yeah, yeah, we can prevent that from happening again in the future.”

Lucas Perry: Is there a opportunity for boosting or beefing a human immune system or a public early warning detection systems of powerful and deadly synthetic bio agents?

George Church: Well so, yes is the simple answer. If we boost our immune systems in a public way — which it almost would have to be, there’d be much discussion about how to do that — then pathogens that get around those boosts might become more common. In terms of surveillance, I proposed in 2004 that we had an opportunity and still do of doing surveillance on all synthetic DNA. I think that really should be 100% worldwide. Right now it’s 80% or so. That is relatively inexpensive to fully implement. I mean the fact that we’ve done 80% already closer to this.

Lucas Perry: Yeah. So, funny enough I was actually just about to ask you about that paper that I think you’re referencing. So in 2004 you wrote A Synthetic Biohazard Non-proliferation Proposal, in anticipation of a growing dual use risk of synthetic biology, which proposed in part the sale and registry of certain synthesis machines to verified researchers. If you were to write a similar proposal today, are there some base elements of it you would consider including, especially since the ability to conduct synthetic biology research has vastly proliferated since then? And just generally, are you comfortable with the current governance of dual use research?

George Church: I probably would not change that 2004 white paper very much. Amazingly the world has not changed that much. There still are a very limited number of chemistries and devices and companies, so that’s a bottleneck which you can regulate and is being regulated by the International Gene Synthesis Consortium, IGSC. I did advocate back then and I’m still advocating that we get closer to an international agreement. Two sectors generally in the United Nations have said casually that they would be in favor of that, but we need essentially every level from the UN all the way down to local governments.

There’s really very little pushback today. There was some pushback back in 2004 where the company’s lawyers felt that they would be responsible or there would be an invasion of privacy of their customers. But I think eventually the rationale of high risk avoidance won out, so now it’s just a matter of getting full compliance.

One of these unfortunate things that the better you are at avoiding an existential risk, the less people know about it. In fact, we did so well on Y2K makes it uncertain as to whether we needed to do anything about Y2K at all, and I think hopefully the same thing will be true for a number of disasters that we avoid without most of the population even knowing how close we were.

Lucas Perry: So the main surveillance intervention here would be heavy monitoring and regulation and tracking of the synthesis machines? And then also a watch dog organization which would inspect the products of said machines?

George Church: Correct.

Lucas Perry: Okay.

George Church: Right now most of the DNA is ordered. You’ll send on the internet your order. They’ll send back the DNA. Those same principles have to apply to desktop devices. It has to get some kind of approval to show that you are qualified to make a particular DNA before the machine will make that DNA. And it has to be protected against hardware and software hacking which is a challenge. But again, it’s a numbers game.

Lucas Perry: So on the topic of biological risk, we’re currently in the context of the COVID-19 pandemic. What do you think humanity should take as lessons from COVID-19?

George Church: Well, I think the big one is testing. Testing is probably the fastest way out of it right now. The geographical locations that have pulled out of it fastest were the ones that were best at testing and isolation. If your testing is good enough, you don’t even have to have very good contact tracing, but that’s also valuable. The longer shots are cures and vaccines and those are not entirely necessary and they are long-term and uncertain. There’s no guarantee that we will come up with a cure or a vaccine. For example, HIV, TB and malaria do not have great vaccines, and most of them don’t have great stable cures. HIV is a full series of cures over time. But not even cures. They’re more maintenance, management.

I sincerely hope that coronavirus is not in that category of HIV, TB, and malaria. But we can’t do public health based on hopes alone. So testing. I’ve been requesting a bio weather map and working towards improving the technology to do so since around 2002, which was before the SARS 2003, as part of the inspiration for the personal genome project, was this bold idea of bio weather map. We should be at least as interested in what biology is doing geographically as we are about what the low pressure fronts are doing geographically. It could be extremely inexpensive, certainly relative to the multi-trillion dollar cost for one disease.

Lucas Perry: So given the ongoing pandemic, what has COVID-19 demonstrated about human global systems in relation to existential and global catastrophic risk?

George Church: I think it’s a dramatic demonstration that we’re more fragile than we would like to believe. It’s a demonstration that we tend to be more reactive than proactive or preventative. And it’s a demonstration that we’re heterogeneous. That there are geographical reasons and political systems that are better prepared. And I would say at this point the United States is probably among the least prepared, and that was predictable by people who thought about this in advance. Hopefully we will be adequately prepared that we will not emerge from this as a third world nation. But that is still a possibility.

I think it’s extremely important to make our human systems, especially global systems more resilient. It would be nice to take as examples the countries that did the best or even towns that did the best. For example, the towns of Vo, Italy and I think Bolinas, California, and try to spread that out to the regions that did the worst. Just by isolation and testing, you can eliminate it. That sort of thing is something that we should have worldwide. To make the human systems more resilient we can alter our bodies, but I think very effective is altering our social structures so that we are testing more frequently, we’re constantly monitoring both zoonotic sources and testing bushmeat and all the places where we’re getting too close to the animals. But also testing our cities and all the environments that humans are in so that we have a higher probability of seeing patient zero before they become a patient.

Lucas Perry: The last category that you brought up at the very beginning of this podcast was preventative measures and part of that was not having all of our eggs in the same basket. That has to do with say Mars colonization or colonization of other moons which are perhaps more habitable and then eventually to Alpha Centauri and beyond. So with advanced biology and advanced artificial intelligence, we’ll have better tools and information for successful space colonization. What do you see as the main obstacles to overcome for colonizing the solar system and beyond?

George Church: So we’ll start with the solar system. Most of the solar system is not pleasant compared to Earth. It’s a vacuum and it’s cold, including Mars and many of the moons. There are moons that have more water, more liquid water than Earth, but it requires some drilling to get down to it typically. There’s radiation. There’s low gravity. And we’re not adaptive.

So we might have to do some biological changes. They aren’t necessarily germline but they’ll be the equivalent. There are things that you could do. You can simulate gravity with centrifuges and you can simulate the radiation protection we have on earth with magnetic fields and thick shielding, equivalent of 10 meters of water or dirt. But there will be a tendency to try to solve those problems. There’ll be issues of infectious disease, which ones we want to bring with us and which ones we want to quarantine away from. That’s an opportunity more than a uniquely space related problem.

A lot of the barriers I think are biological. We need to practice building colonies. Right now we have never had a completely recycled human system. We have completely recycled plant and animal systems but none that are humans, and that is partly having to do with social issues, hygiene and eating practices and so forth. I think that can be done, but it should be tested on Earth because the consequences of failure on a moon or non-earth planet is much more severe than if you test it out on Earth. We should have thousands, possibly millions of little space colonies on Earth since one of my pet projects is making that so that it’s economically feasible on Earth. Only by heavy testing at that scale will we find the real gotchas and failure modes.

And then final barrier, which is more in the category that people think about is the economies of, if you do the physics calculation how much energy it takes to raise a kilogram into orbit or out of orbit, it’s much, much less than the cost per kilogram, orders of magnitude than what we currently do. So there’s some opportunity for improvement there. So that’s in the solar system.

Outside of the solar system let’s say Proxima B, Alpha Centauri and things of that range, there’s nothing particularly interesting between here and there, although there’s nothing to stop us from occupying the vacuum of space. To get to four and a half light years either requires a revolution in propulsion and sustainability in a very small container, or a revolution in the size of the container that we’re sending.

So, one pet project that I’m working on is trying to make a nanogram size object that would contain the information sufficiently for building a civilization or at least building a communication device that’s much easier to accelerate and decelerate a nanogram than it is to do any of the scale of space probes we currently use.

Lucas Perry: Many of the issues that human beings will face within the solar system and beyond machines or synthetic computation that exist today seems more robust towards. Again, there are the things which you’ve already talked about like the computational efficiency and precision for self-repair and other kinds of things that modern computers may not have. So I think just a little bit of perspective on that would be useful, like why we might not expect that machines would take the place of humans in many of these endeavors.

George Church: Well, so for example, we would be hard pressed to even estimate, I haven’t seen a good estimate yet, of a self-contained device that could make a copy of itself from dirt or whatever, the chemicals that are available to it on a new planet. But we do know how to do that with humans or hybrid systems.

Here’s a perfect example of a hybrid system. Is a human can’t just go out into space. It needs a spaceship. A spaceship can’t go out into space either. It needs a human. So making a replicating system seems like a good idea, both because we are replicating systems and it lowers the size of the package you need to send. So if you want to have a million people in the Alpha Centauri system, it might be easier just to send a few people and a bunch of frozen embryos or something like that.

Sending a artificial general intelligence is not sufficient. It has to also be able to make a copy of itself, which I think is a much higher hurdle than just AGI. I think AGI, we will achieve before we achieve AGI plus replication. It may not be much before, it will be probably be before.

In principle, a lot of organisms, including humans, start from single cells and mammals tend to need more support structure than most other vertebrates. But in principle if you land a vertebrate fertilized egg in an aquatic environment, it will develop and make copies of itself and maybe even structures.

So my speculation is that there exist a nanogram cell that’s about the size of a lot of vertebrate eggs. There exists a design for a nanogram that would be capable of dealing with a wide variety of harsh environments. We have organisms that thrive everywhere between the freezing point of water and the boiling point or 100 plus degrees at high pressure. So you have this nanogram that is adapted to a variety of different environments and can reproduce, make copies of itself, and built into it is a great deal of know-how about building things. The same way that building a nest is built into a bird’s DNA, you could have programmed into an ability to build computers or a radio or laser transmitters so it could communicate and get more information.

So a nanogram could travel at close the speed of light and then communicate at close the speed of light once it replicates. I think that illustrates the value of hybrid systems, within this particular case a high emphasis on the biochemical, biological components that’s capable of replicating as the core thing that you need for efficient transport.

Lucas Perry: If your claim about hybrid systems is true, then if we extrapolate it to say the deep future, then if there’s any other civilizations out there, then the form in which we will meet them will likely also be hybrid systems.

And this point brings me to reflect on something that Nick Bostrom talks about, the great filters which are supposed points in the evolution and genesis of life throughout the cosmos that are very difficult for life to make it through those evolutionary leaps, so almost all things don’t make it through the filter. And this is hypothesized to be a way of explaining the Fermi paradox, why is it that there are hundreds of billions of galaxies and we don’t see any alien superstructures or we haven’t met anyone yet?

So, I’m curious to know if you have any thoughts or opinions on what the main great filters to reaching interstellar civilization might be?

George Church: Of all the questions you’ve asked, this is the one where i’m most uncertain. I study among other things how life originated, in particular how we make complex biopolymers, so ribosomes making proteins for example, the genetic code. That strikes me as a pretty difficult thing to have arisen. That’s one filter. Maybe much earlier than many people would think.

Another one might be lack of interest that once you get to a certain level of sophistication, you’re happy with your life, your civilization, and then typically you’re overrun by someone or something that is more primitive from your perspective. And then they become complacent, and the cycle repeats itself.

Or the misunderstanding of resources. I mean we’ve seen a number of island civilizations that have gone extinct because they didn’t have a sustainable ecosystem, or they might turn inward. You know, like Easter Island, they got very interested in making statutes and tearing down trees in order to do that. And so they ended up with an island that didn’t have any trees. They didn’t use those trees to build ships so they could populate the rest of the planet. They just miscalculated.

So all of those could be barriers. I don’t know which of them it is. There probably are many planets and moons where if we transplanted life, it would thrive there. But it could be that just making life in the first place is hard and then making intelligence and civilizations that care to grow outside of their planet. It might be hard to detect them if they’re growing in a subtle way.

Lucas Perry: I think the first thing you brought up might be earlier than some people expect, but I think for many people thinking about great filters it is not like abiogenesis, if that’s the right word, seems really hard getting the first self-replicating things in the ancient oceans going. There seemed to be loss of potential filters from there to multi-cellular organisms and then general intelligences like people and beyond.

George Church: But many empires have just become complacent and they’ve been overtaken by perfectly obvious technology that they could’ve at least kept up with by spying, if not by invention. But they became complacent. They seem to plateau at roughly the same place. We’re plateauing more or less the same place the Easter Islanders and the Roman Empire plateaued. Today I mean the slight differences that we are maybe space faring civilization now.

Lucas Perry: Barely.

George Church: Yeah.

Lucas Perry: So, climate change has been something that you’ve been thinking about a bunch it seems. You have the Woolly Mammoth Project which we don’t need to necessarily get into here. But are you considering or are you optimistic about other methods of using genetic engineering for combating climate change?

George Church: Yeah, I think genetic engineering has potential. Most of the other things we talk about putting in LEDs or slightly more efficient car engines, solar power and so forth. And these are slowing down the inevitable rather than reversing it. To reverse it we need to take carbon out of the air, and a really, great way to do that is with photosynthesis, partly because it builds itself. So if we just allow the Arctic to do the photosynthesis the way it used to, we could get a net loss of carbon dioxide from the atmosphere and put it into the ground rather than releasing a lot.

That’s part of the reason that I’m obsessed with Arctic solutions and the Arctic Ocean is also similar. It’s the place where you get upwelling of nutrients, and so you get a natural, very high rate of carbon fixation. It’s just you also have a high rate of carbon consumption back into carbon dioxide. So if you could change that cycle a little bit. So that I think both Arctic land and ocean is a very good place to reverse carbon and accumulation in the atmosphere, and I think that that is best done with synthetic biology.

Now the barriers have historically been release of recombinant DNA into the wild. We now have salmon which are essentially in the wild, the humans that are engineered that are in the wild, and we have golden rice is now finally after more than a decade of tussle being used in the Philippines.

So I think we’re going to see more and more of that. To some extent even the plants of agriculture are in the wild. This is one of the things that was controversial, was that the pollen was going all over the place. But I think there’s essentially zero examples of recombinant DNA causing human damage. And so we just need to be cautious about our environmental decision making.

Lucas Perry: All right. Now taking kind of a sharp pivot here. In the philosophy of consciousness there is a distinction between the hard problem of consciousness and the easy problem. The hard problem is why is it that computational systems have something that it is like to be that system? Why is there a first person phenomenal perspective and experiential perspective filled with what one might call qualia. Some people reject the hard problem as being an actual thing and prefer to say that consciousness is an illusion or is not real. Other people are realists about consciousness and they believe phenomenal consciousness is substantially real and is on the same ontological or metaphysical footing as other fundamental forces of nature, or that perhaps consciousness discloses the intrinsic nature of the physical.

And then the easy problems are how is that we see, how is that light enters the eyes and gets computed, how is it that certain things are computationally related to consciousness?

David Chalmers calls another problem here, the meta problem of consciousness, which is why is it that we make reports about consciousness? Why is that we even talk about consciousness? Particularly if it’s an illusion? Maybe it’s performing some kind of weird computational efficiency. And if it is real, there seems to be some tension between the standard model of physics, being pretty complete feeling, and then how is it that we would be making reports about something that doesn’t have real causal efficacy if there’s nothing real to add to the standard model?

Now you have the Human Connectome Project which would seem to help a lot with the easy problems of consciousness and maybe might have something to say about the meta problem. So I’m curious to know if you have particular views on consciousness or how the Human Connectome Project might relate to that interest?

George Church: Okay. So I think that consciousness is real and it has selective advantage. Part of reality to a biologist is evolution, and I think it’s somewhat coupled to free will. I think of them as even though they are real and hard to think about, they may be easier than we often lay on, and this is when you think of it from an evolutionary standpoint or also from a simulation standpoint.

I can really only evaluate consciousness and the qualia by observations. I can only imagine that you have something similar to what I feel by what you do. And from that standpoint it wouldn’t be that hard to make a synthetic system that displayed consciousness that would be nearly impossible to refute. And as that system replicated and took on a life of its own, let’s say it’s some hybrid biological, non-biological system that displays consciousness, to really convincingly display consciousness it would also have to have some general intelligence or at least pass the Turing test.

But it would have evolutionary advantage in that it could think or could reason about itself. It recognizes the difference between itself and something else. And this has been demonstrated already in robots. There are admittedly kind of proof of concept demos. Like you have robots that can tell themselves in a reflection in a mirror from other people to operate upon their own body by removing dirt from their face, which is only demonstrated in a handful of animal species and recognize their own voice.

So you can see how these would have evolutionary advantages and they could be simulated to whatever level of significance is necessarily to convince an objective observer that they are conscious as far as you know, to the same extent that I know that you are.

So I think the hard problem is a worthy one. I think it is real. It has evolutionary consequences. And free will is related in that free will I think is a game theory which is if you behave in a completely deterministic predictable way, all the organisms around you have an advantage over you. They know that you are going to do a certain thing and so they can anticipate that, they can steal your food, they can bite you, they can do whatever they want. But if you’re unpredictable, which is essentially free will, in this case it can be a random number generator or dice, you now have a selective advantage. And to some extent you could have more free will than the average human, though the average human is constrained by all sorts of social mores and rules and laws and things like that, that something with more free will might not be.

Lucas Perry: I guess I would just want to tease a part self-consciousness from consciousness in general. I think that one can have a first person perspective without having a sense of self or being able to reflect on one’s own existence as a subject in the world. I also feel a little bit confused about why consciousness would provide an evolutionary advantage, where consciousness is the ability to experience things, I guess I have some intuitions about it not being causal like having causal efficacy because the standard model doesn’t seem to be missing anything essentially.

And then your point on free will makes sense. I think that people mean very different things here. I think within common discourse, there is a much more spooky version of free will which we can call libertarian free will, which says that you could’ve done otherwise and it’s more closely related to religion and spirituality, which I reject and I think most people listening to this would reject. I just wanted to point that out. Your take on free will makes sense and is the more scientific and rational version.

George Church: Well actually, I could say they could’ve done otherwise. If you consider that religious, that is totally compatible with flipping the coin. That helps you do otherwise. If you could take the same scenario, you could do something differently. And that ability to do otherwise is of selective advantage. As indeed religions can be of a great selective advantage in certain circumstances.

So back to consciousness versus self-consciousness, I think they’re much more intertwined. I’d be cautious about trying to disentangle them too much. I think your ability to reason about your own existence as being separate from other beings is very helpful for say self-grooming, for self-protection, so forth. And I think that maybe consciousness that is not about oneself may be a byproduct of that.

The greater your ability to reason about yourself versus others, your hand versus the piece of wood in your hands makes you more successful. Even if you’re not super intelligent, just the fact that you’re aware that you’re different from the entity that you’re competing with is a advantage. So I find it not terribly useful to make a giant rift between consciousness and self-consciousness.

Lucas Perry: Okay. So I’m becoming increasingly mindful of your time. We have five minutes left here so I’ve just got one last question for you and I need just a little bit to set it up. You’re vegan as far as I understand.

George Church: Yes.

Lucas Perry: And the effective altruism movement is particularly concerned with animal suffering. We’ve talked a lot about genetic engineering and its possibilities. David Pearce has written something called The Hedonistic Imperative which outlines a methodology and philosophy for using genetic engineering for voluntarily editing out suffering. So that can be done both for wild animals and it could be done for the human species and our descendants.

So I’m curious to know what your view is on animal suffering generally in the world, and do you think about or have thoughts on genetic engineering for wild animal suffering in places outside of human civilization? And then finally, do you view a role for genetic engineering and phasing out human suffering, making it biologically impossible by re-engineering people to operate on gradients of intelligent bliss?

George Church: So I think this kind of difficult problem, a technique that I employ is I imagine what this would be like on another planet and in the future, and whether given that imagined future, we would be willing to come back to where we are now. Rather than saying whether we’re willing to go forward, they ask whether you’re willing to come back. Because there’s a great deal of appropriate respect for inertia and the way things have been. Sometimes it’s called natural, but I think natural includes the future and everything that’s manmade, as well, we’re all part of nature. So I think it’s more of the way things were. So if you go to the future and ask whether we’d be willing to come back is a different way of looking.

I think in going to another planet, we might want to take a limited set of organisms with us, and we might be tempted to make them so that they don’t suffer, including humans. There is a certain amount of let’s say pain which could be a little red light going off on your dashboard. But the point of pain is to get your attention. And you could reframe that. People are born with chronic insensitivity to pain, CIPA, genetically, and they tend to get into problems because they will chew their lips and other body parts and get infected, or they will jump from high places because it doesn’t hurt and break things they shouldn’t break.

So you need some kind of alarm system that gets your attention that cannot be ignored. But I think it could be something that people would complain about less. It might even be more effective because you could prioritize it.

I think there’s a lot of potential there. By studying people that have chronic insensitivity to pain, you could even make that something you could turn on and off. SCNA9 for example is a channel in human neuro system that doesn’t cause the dopey effects of opioids. You can be pain-free without being compromised intellectually. So I think that’s a very promising direction to think about this problem.

Lucas Perry: Just summing that up. You do feel that it is technically feasible to replace pain with some other kind of informationally sensitive thing that could have the same function for reducing and mitigating risk and signaling damage?

George Church: We can even do better. Right now we’re unaware of certain physiological states can be quite hazardous and we’re blind to for example all the pathogens in the air around us. These could be new signaling. It wouldn’t occur to me to make every one of those painful. It would be better just to see the pathogens and have little alarms that go off. It’s much more intelligent.

Lucas Perry: That makes sense. So wrapping up here, if people want to follow your work, or follow you on say Twitter or other social media, where is the best place to check out your work and to follow what you do?

George Church: My Twitter is @geochurch. And my website is easy to find just by google, but it’s arep.med.harvard.edu. Those are two best places.

Lucas Perry: All right. Thank you so much for this. I think that a lot of the information you provided about the skillfulness and advantages of biology and synthetic computation will challenge many of the intuitions of our usual listeners and people in general. I found this very interesting and valuable, and yeah, thanks so much for coming on.

George Church: Okay. Great. Thank you.

FLI Podcast: The Precipice: Existential Risk and the Future of Humanity with Toby Ord

Toby Ord’s “The Precipice: Existential Risk and the Future of Humanity” has emerged as a new cornerstone text in the field of existential risk. The book presents the foundations and recent developments of this budding field from an accessible vantage point, providing an overview suitable for newcomers. For those already familiar with existential risk, Toby brings new historical and academic context to the problem, along with central arguments for why existential risk matters, novel quantitative analysis and risk estimations, deep dives into the risks themselves, and tangible steps for mitigation. “The Precipice” thus serves as both a tremendous introduction to the topic and a rich source of further learning for existential risk veterans. Toby joins us on this episode of the Future of Life Institute Podcast to discuss this definitive work on what may be the most important topic of our time.

Topics discussed in this episode include:

  • An overview of Toby’s new book
  • What it means to be standing at the precipice and how we got here
  • Useful arguments for why existential risk matters
  • The risks themselves and their likelihoods
  • What we can do to safeguard humanity’s potential

Timestamps: 

0:00 Intro 

03:35 What the book is about 

05:17 What does it mean for us to be standing at the precipice? 

06:22 Historical cases of global catastrophic and existential risk in the real world

10:38 The development of humanity’s wisdom and power over time  

15:53 Reaching existential escape velocity and humanity’s continued evolution

22:30 On effective altruism and writing the book for a general audience 

25:53 Defining “existential risk” 

28:19 What is compelling or important about humanity’s potential or future persons?

32:43 Various and broadly appealing arguments for why existential risk matters

50:46 Short overview of natural existential risks

54:33 Anthropogenic risks

58:35 The risks of engineered pandemics 

01:02:43 Suggestions for working to mitigate x-risk and safeguard the potential of humanity 

01:09:43 How and where to follow Toby and pick up his book

 

This podcast is possible because of the support of listeners like you. If you found this conversation to be meaningful or valuable consider supporting it directly by donating at futureoflife.org/donate. Contributions like yours make these conversations possible.

All of our podcasts are also now on Spotify and iHeartRadio! Or find us on SoundCloudiTunesGoogle Play and Stitcher.

You can listen to the podcast above or read the transcript below. 

Lucas Perry: Welcome to the Future of Life Institute Podcast. I’m Lucas Perry. This episode is with Toby Ord and covers his new book “The Precipice: Existential Risk and the Future of Humanity.” This is a new cornerstone piece in the field of existential risk and I highly recommend this book for all persons of our day and age. I feel this work is absolutely critical reading for living an informed, reflective, and engaged life in our time. And I think even for those well acquainted with this topic area will find much that is both useful and new in this book. Toby offers a plethora of historical and academic context to the problem, tons of citations and endnotes, useful definitions, central arguments for why existential risk matters that can be really helpful for speaking to new people about this issue, and also novel quantitative analysis and risk estimations, as well as what we can actually do to help mitigate these risks. So, if you’re a regular listener to this podcast, I’d say this is a must add to your science, technology, and existential risk bookshelf. 

The Future of Life Institute is a non-profit and this podcast is funded and supported by listeners like you. So if you find what we do on this podcast to be important and beneficial, please consider supporting the podcast by donating at futureoflife.org/donate. If you support any other content creators via services like Patreon, consider viewing a regular subscription to FLI in the same light. You can also follow us on your preferred listening platform, like on Apple Podcasts or Spotify, by searching for us directly or following the links on the page for this podcast found in the description.

Toby Ord is a Senior Research Fellow in Philosophy at Oxford University. His work focuses on the big picture questions facing humanity. What are the most important issues of our time? How can we best address them?

Toby’s earlier work explored the ethics of global health and global poverty, demonstrating that aid has been highly successful on average and has the potential to be even more successful if we were to improve our priority setting. This led him to create an international society called Giving What We Can, whose members have pledged over $1.5 billion to the most effective charities helping to improve the world. He also co-founded the wider effective altruism movement, encouraging thousands of people to use reason and evidence to help others as much as possible.

His current research is on the long-term future of humanity,  and the risks which threaten to destroy our entire potential.

Finally, the Future of Life Institute podcasts have never had a central place for conversation and discussion about the episodes and related content. In order to facilitate such conversation, I’ll be posting the episodes to the LessWrong forum at Lesswrong.com where you’ll be able to comment and discuss the episodes if you so wish. The episodes more relevant to AI alignment will be crossposted from LessWrong to the Alignment Forum as well at alignmentforum.org.  

And so with that, I’m happy to present Toby Ord on his new book “The Precipice.”

We’re here today to discuss your new book, The Precipice: Existential Risk and the Future of Humanity. Tell us a little bit about what the book is about.

Toby Ord: The future of humanity, that’s the guiding idea, and I try to think about how good our future could be. That’s what really motivates me. I’m really optimistic about the future we could have if only we survive the risks that we face. There have been various natural risks that we have faced for as long as humanity’s been around, 200,000 years of Homo sapiens or you might include an even broader definition of humanity that’s even longer. That’s 2000 centuries and we know that those natural risks can’t be that high or else we wouldn’t have been able to survive so long. It’s quite easy to show that the risks should be lower than about 1 in 1000 per century.

But then with humanity’s increasing power over that time, the exponential increases in technological power. We reached this point last century with the development of nuclear weapons, where we pose a risk to our own survival and I think that the risks have only increased since then. We’re in this new period where the risk is substantially higher than these background risks and I call this time the precipice. I think that this is a really crucial time in the history and the future of humanity, perhaps the most crucial time, this few centuries around now. And I think that if we survive, and people in the future, look back on the history of humanity, schoolchildren will be taught about this time. I think that this will be really more important than other times that you’ve heard of such as the industrial revolution or even the agricultural revolution. I think this is a major turning point for humanity. And what we do now will define the whole future.

Lucas Perry: In the title of your book, and also in the contents of it, you developed this image of humanity to be standing at the precipice, could you unpack this a little bit more? What does it mean for us to be standing at the precipice?

Toby Ord: I sometimes think of humanity has this grand journey through the wilderness with dark times at various points, but also moments of sudden progress and heady views of the path ahead and what the future might hold. And I think that this point in time is the most dangerous time that we’ve ever encountered, and perhaps the most dangerous time that there will ever be. So I see it in this central metaphor of the book, humanity coming through this high mountain pass and the only path onwards is this narrow ledge along a cliff side with this steep and deep precipice at the side and we’re kind of inching our way along. But we can see that if we can get past this point, there’s ultimately, almost no limits to what we could achieve. Even if we can’t precisely estimate the risks that we face, we know that this is the most dangerous time so far. There’s every chance that we don’t make it through.

Lucas Perry: Let’s talk a little bit then about how we got to this precipice and our part in this path. Can you provide some examples or a story of global catastrophic risks that have happened and near misses of possible existential risks that have occurred so far?

Toby Ord: It depends on your definition of global catastrophe. One of the definitions that’s on offer is 10%, or more of all people on the earth at that time being killed in a single disaster. There is at least one time where it looks like we’ve may have reached that threshold, which was the Black Death, which killed between a quarter and a half of people in Europe and may have killed many people in South Asia and East Asia as well and the Middle East. It may have killed one in 10 people across the whole world. Although because our world was less connected than it is today, it didn’t reach every continent. In contrast, the Spanish Flu 1918 reached almost everywhere across the globe, and killed a few percent of people.

But in terms of existential risk, none of those really posed an existential risk. We saw, for example, that despite something like a third of people in Europe dying, that there wasn’t a collapse of civilization. It seems like we’re more robust than some give us credit for, but there’ve been times where there hasn’t been an actual catastrophe, but there’s been near misses in terms of the chances.

There are many cases actually connected to the Cuban Missile Crisis, a time of immensely high tensions during the Cold War in 1962. I think that the closest we have come is perhaps the events on a submarine that was unknown to the U.S. that it was carrying a secret nuclear weapon and the U.S. Patrol Boats tried to force it to surface by dropping what they called practice depth charges, but the submarine thought that there were real explosives aimed at hurting them. The submarine was made for the Arctic and so it was overheating in the Caribbean. People were dropping unconscious from the heat and the lack of oxygen as they tried to hide deep down in the water. And during that time the captain, Captain Savitsky, ordered that this nuclear weapon be fired and the political officer gave his consent as well.

On any of the other submarines in this flotilla, this would have been enough to launch this torpedo that then would have been a tactical nuclear weapon exploding and destroying the fleet that was oppressing them, but on this one, it was lucky that the flotilla commander was also on board this submarine, Captain Vasili Arkhipov and so, he overruled this and talked Savitsky down from this. So this was a situation at the height of this tension where a nuclear weapon would have been used. And we’re not quite sure, maybe Savitsky would have decided on his own not to do it, maybe he would have backed down. There’s a lot that’s not known about this particular case. It’s very dramatic.

But Kennedy had made it very clear that any use of nuclear weapons against U.S. Armed Forces would lead to an all-out full scale attack on the Soviet Union, so they hadn’t anticipated that tactical weapons might be used. They assumed it would be a strategic weapon, but it was their policy to respond with a full scale nuclear retaliation and it looks likely that that would have happened. So that’s the case where ultimately zero people were killed in that event. The submarine eventually surfaced and surrendered and then returned to Moscow where people were disciplined, but it brought us very close to this full scale nuclear war.

I don’t mean to imply that that would have been the end of humanity. We don’t know whether humanity would survive the full scale nuclear war. My guess is that we would survive, but that’s its own story and it’s not clear.

Lucas Perry: Yeah. The story to me has always felt a little bit unreal. It’s hard to believe we came so close to something so bad. For listeners who are not aware, the Future of Life Institute gives out a $50,000 award each year, called the Future of Life Award to unsung heroes who have contributed greatly to the existential security of humanity. We actually have awarded Vasili Arkhipov’s family with the Future of Life Award, as well as Stanislav Petrov and Matthew Meselson. So if you’re interested, you can check those out on our website and see their particular contributions.

And related to nuclear weapons risk, we also have a webpage on nuclear close calls and near misses where there were accidents with nuclear weapons which could have led to escalation or some sort of catastrophe. Is there anything else here you’d like to add in terms of the relevant historical context and this story about the development of our wisdom and power over time?

Toby Ord: Yeah, that framing, which I used in the book comes from Carl Sagan in the ’80s when he was one of the people who developed the understanding of nuclear winter and he realized that this could pose a risk to humanity on the whole. The way he thought about it is that we’ve had this massive development over the hundred billion human lives that have come before us. This succession of innovations that have accumulated building up this modern world around us.

If I look around me, I can see almost nothing that wasn’t created by human hands and this, as we all know, has been accelerating and often when you try to measure exponential improvements in technology over time, leading to the situation where we have the power to radically reshape the Earth’s surface, both say through our agriculture, but also perhaps in a moment through nuclear war. This increasing power has put us in a situation where we hold our entire future in the balance. A few people’s actions over a few minutes could actually potentially threaten that entire future.

In contrast, humanity’s wisdom has grown only falteringly, if at all. Many people would suggest that it’s not even growing. And by wisdom here, I mean, our ability to make wise decisions for human future. I talked about this in the book under the idea about civilizational virtues. So if you think of humanity as a group of agents, in the same way that we think of say nation states as group agents, we talk about is it in America’s interest to promote this trade policy or something like that? We can think of what’s in humanity’s interests and we find that if we think about it this way, humanity is crazily impatient and imprudent.

If you think about the expected lifespan of humanity, a typical species lives for about a million years. Humanity is about 200,000 years old. We have something like 800,000 or a million or more years ahead of us if we play our cards right and we don’t lead to our own destruction. The analogy would be 20% of the way through our life, like an adolescent who’s just coming into his or her own power, but doesn’t have the wisdom or the patience to actually really pay any attention to this possible whole future ahead of them and so they’re just powerful enough to get themselves in trouble, but not yet wise enough to avoid that.

If you continue this analogy, what is often hard for humanity at the moment to think more than a couple of election cycles ahead at best, but that would correspond say eight years to just the next eight hours within this person’s life. For the kind of short term interests during the rest of the day, they put the whole rest of their future at risk. And so I think that that helps to see what this lack of wisdom looks like. It’s not that it’s just a highfalutin term of some sort, but you can kind of see what’s going on is that the person is incredibly imprudent and impatient. And I think that many others virtues or vices that we think of in an individual human’s life can be applied in this context and are actually illuminating about where we’re going wrong.

Lucas Perry: Wonderful. Part of the dynamic here in this wisdom versus power race seems to be one of the solutions being slowing down power seems untenable or that it just wouldn’t work. So it seems more like we have to focus on amplifying wisdom. Is this also how you view the dynamic?

Toby Ord: Yeah, that is. I think that if humanity was more coordinated, if we were able to make decisions in a unified manner better than we actually can. So, if you imagine this was a single player game, I don’t think it would be that hard. You could just be more careful with your development of power and make sure that you invest a lot in institutions, and in really thinking carefully about things. I mean, I think that the game is ours to lose, but unfortunately, we’re less coherent than that and if one country decides to hold off on developing things, then other countries might run ahead and produce similar amount of risk.

Theres this kind of the tragedy of the commons at this higher level and so I think that it’s extremely difficult in practice for humanity to go slow on progress of technology. And I don’t recommend that we try. So in particular, there’s only at the moment, only a small number of people who really care about these issues and are really thinking about the long-term future and what we could do to protect it. And if those people were to spend their time arguing against progress of technology, I think that it would be a really poor use of their energies and probably just annoy and alienate the people they were trying to convince. And so instead, I think that the only real way forward is to focus on improving wisdom.

I don’t think that’s impossible. I think that humanity’s wisdom, as you could see from my comment before about how we’re kind of disunified, partly, it involves being able to think better about things as individuals, but it also involves being able to think better collectively. And so I think that institutions for overcoming some of these tragedies of the commons or prisoner’s dilemmas at this international level, are an example of the type of thing that will make humanity make wiser decisions in our collective interest.

Lucas Perry: It seemed that you said by analogy, that humanity’s lifespan would be something like a million years as compared with other species.

Toby Ord: Mm-hmm (affirmative).

Lucas Perry: That is likely illustrative for most people. I think there’s two facets of this that I wonder about in your book and in general. The first is this idea of reaching existential escape velocity, where it would seem unlikely that we would have a reason to end in a million years should we get through the time of the precipice and the second is I’m wondering your perspective on Nick Bostrom calls what matters here in the existential condition, Earth-originating intelligent life. So, it would seem curious to suspect that even if humanity’s existential condition were secure that we would still be recognizable as humanity in some 10,000, 100,000, 1 million years’ time and not something else. So, I’m curious to know how the framing here functions in general for the public audience and then also being realistic about how evolution has not ceased to take place.

Toby Ord: Yeah, both good points. I think that the one million years is indicative of how long species last when they’re dealing with natural risks. It’s I think a useful number to try to show why there are some very well-grounded scientific reasons for thinking that a million years is entirely in the ballpark of what we’d expect if we look at other species. And even if you look at mammals or other hominid species, a million years still seems fairly typical, so it’s useful in some sense for setting more of a lower bound. There are species which have survived relatively unchanged for much longer than that. One example is the horseshoe crab, which is about 450 million years old whereas complex life is only about 540 million years old. So that’s something where it really does seem like it is possible to last for a very long period of time.

If you look beyond that the Earth should remain habitable for something in the order of 500 million or a billion years for complex life before it becomes too hot due to the continued brightening of our sun. If we took actions to limit that brightening, which look almost achievable with today’s technology, we would only need to basically shade the earth by about 1% of the energy coming at it and increase that by 1%, I think it’s every billion years, we will be able to survive as long as the sun would for about 7 billion more years. And I think that ultimately, we could survive much longer than that if we could reach our nearest stars and set up some new self-sustaining settlement there. And then if that could then spread out to some of the nearest stars to that and so on, then so long as we can reach about seven light years in one hop, we’d be able to settle the entire galaxy. There are stars in the galaxy that will still be burning in about 10 trillion years from now and there’ll be new stars for millions of times as long as that.

We could have this absolutely immense future in terms of duration and the technologies that are beyond our current reach and if you look at the energy requirements to reach nearby stars, they’re high, but they’re not that high compared to say, the output of the sun over millions of years. And if we’re talking about a scenario where we’d last millions of years anyway, it’s unclear why it would be difficult with the technology would reach them. It seems like the biggest challenge would be lasting that long in the first place, not getting to the nearest star using technology for millions of years into the future with millions of years of stored energy reserves.

So that’s the kind of big picture question about the timing there, but then you also ask about would it be humanity? One way to answer that is, unless we go to a lot of effort to preserve Homo sapiens as we are now then it wouldn’t be Homo sapiens. We might go to that effort if we decide that it’s really important that it be Homo sapiens and that we’d lose something absolutely terrible. If we were to change, we could make that choice, but if we decide that it would be better to actually allow evolution to continue, or perhaps to direct it by changing who we are with genetic engineering and so forth, then we could make that choice as well. I think that that is a really critically important choice for the future and I hope that we make it in a very deliberate and careful manner rather than just going gung-ho and letting people do whatever they want, but I do think that we will develop into something else.

But in the book, my focus is often on humanity in this kind of broad sense. Earth-originating intelligent life would kind of be a gloss on it, but that has the issue that suppose humanity did go extinct and suppose we got lucky and some other intelligent life started off again, I don’t want to count that in what I’m talking about, even though it would technically fit into Earth-originating intelligent life. Sometimes I put it in the book as humanity or our rightful heirs something like that. Maybe we would create digital beings to replace us, artificial intelligences of some sort. So long as they were the kinds of beings that could actually fulfill the potential that we have, they could realize one of the best trajectories that we could possibly reach, then I would count them. It could also be that we create something that succeeds us, but has very little value, then I wouldn’t count it.

So yeah, I do think that we may be greatly changed in the future. I don’t want that to distract the reader, if they’re not used to thinking about things like that because they might then think, “Well, who cares about that future because it will be some other things having the future.” And I want to stress that there will only be some other things having the future if we want it to be, if we make that choice. If that is a catastrophic choice, then it’s another existential risk that we have to deal with in the future and which we could prevent. And if it is a good choice and we’re like the caterpillar that really should become a butterfly in order to fulfill its potential, then we need to make that choice. So I think that is something that we can leave to future generations that it is important that they make the right choice.

Lucas Perry: One of the things that I really appreciate about your book is that it tries to make this more accessible for a general audience. So, I actually do like it when you use lower bounds on humanity’s existential condition. I think talking about billions upon billions of years can seem a little bit far out there and maybe costs some weirdness points and as much as I like the concept of Earth-originating intelligent life, I also think it costs some weirdness points.

And it seems like you’ve taken some effort to sort of make the language not so ostracizing by decoupling it some with effective altruism jargon and the kind of language that we might use in effective altruism circles. I appreciate that and find it to be an important step. The same thing I feel feeds in here in terms of talking about descendant scenarios. It seems like making things simple and leveraging human self-interest is maybe important here.

Toby Ord: Thanks. When I was writing the book, I tried really hard to think about these things, both in terms of communications, but also in terms of trying to understand what we have been talking about for all of these years when we’ve been talking about existential risk and similar ideas. Often when in effective altruism, there’s a discussion about the different types of cause areas that effective altruists are interested in. There’s people who really care about global poverty, because we can help others who are much poorer than ourselves so much more with our money, and also about helping animals who are left out of the political calculus and the economic calculus and we can see why it is that they’re interests are typically neglected and so we look at factory farms, and we can see how we could do so much good.

And then also there’s this third group of people and then the conversation drifts off a bit, it’s like who have this kind of idea about the future and it’s kind of hard to describe and how to kind of wrap up together. So I’ve kind of seen that as one of my missions over the last few years is really trying to work out what is it that that third group of people are trying to do? My colleague, Will MacAskill, has been working on this a lot as well. And what we see is that this other group of effective altruists are this long-termist group.

The first group is thinking about this cosmopolitan aspect as much as me and it’s not just people in my country that matter, it’s people across the whole world and some of those could be helped much more. And the second group is saying, it’s not just humans that could be helped. If we widen things up beyond the species boundary, then we can see that there’s so much more we could do for other conscious beings. And then this third group is saying, it’s not just our time that we can help, there’s so much we can do to help people perhaps across this entire future of millions of years or further into the future. And so the difference there, the point of leverage is this difference between what fraction of the entire future is our present generation is perhaps just a tiny fraction. And if we can do something that will help that entire future, then that’s where this could be really key in terms of doing something amazing with our resources and our lives.

Lucas Perry: Interesting. I actually had never thought of it that way. And I think it puts it really succinctly the differences between the different groups that people focused on global poverty are reducing spatial or proximity bias in people’s focus on ethics or doing good. Animal farming is a kind of anti-speciesism, broadening our moral circle of compassion to other species and then the long-termism is about reducing time-based ethical bias. I think that’s quite good.

Toby Ord: Yeah, that’s right. In all these cases, you have to confront additional questions. It’s not just enough to make this point and then it follows that things are really important. You need to know, for example, that there really are ways that people can help others in distant countries and that the money won’t be squandered. And in fact, for most of human history, there weren’t ways that we could easily help people in other countries just by writing out a check to the right place.

When it comes to animals, there’s a whole lot of challenging questions there about what is the effects of changing your diet or the effects of donating to a group that prioritize animals in campaigns against factory farming or similar and when it comes to the long-term future, there’s this real question about “Well, why isn’t it that people in the future would be just as able to protect themselves as we are? Why wouldn’t they be even more well-situated to attend to their own needs?” Given the history of economic growth and this kind of increasing power of humanity, one would expect them to be more empowered than us, so it does require an explanation.

And I think that the strongest type of explanation is around existential risk. Existential risks are things that would be an irrevocable loss. So, as I define them, which is a simplification, I think of it as the destruction of humanity’s long-term potential. So I think of our long term potential as you could think of this set of all possible futures that we could instantiate. If you think about all the different collective actions of humans that we could take across all time, this kind of sets out this huge kind of cloud of trajectories that humanity could go in and I think that this is absolutely vast. I think that there are ways if we play our cards right of lasting for millions of years or billions or trillions and affecting billions of different worlds across the cosmos, and then doing all kinds of amazing things with all of that future. So, we’ve got this huge range of possibilities at the moment and I think that some of those possibilities are extraordinarily good.

If we were to go extinct, though, that would collapse this set of possibilities to a much smaller set, which contains much worse possibilities. If we went extinct, there would be just one future, whatever it is that would happen without humans, because there’d be no more choices that humans could make. If we had an irrevocable collapse of civilization, something from which we could never recover, then that would similarly reduce it to a very small set of very meager options. And it’s possible as well that we could end up locked into some dystopian future, perhaps through economic or political systems, where we end up stuck in some very bad corner of this possibility space. So that’s our potential. Our potential is currently the value of the best realistically realizable worlds available to us.

If we fail in an existential catastrophe, that’s the destruction of almost all of this value, and it’s something that you can never get back, because it’s our very potential that would be being destroyed. That then has an explanation as to why it is that people in the future wouldn’t be better able to solve their own problems because we’re talking about things that could fail now, that helps explain why it is that there’s room for us to make such a contribution.

Lucas Perry: So if we were to very succinctly put the recommended definition or framing on existential risk that listeners might be interested in using in the future when explaining this to new people, what is the sentence that you would use?

Toby Ord: An existential catastrophe is the destruction of humanity’s long-term potential, and an existential risk is the risk of such a catastrophe.

Lucas Perry: Okay, so on this long-termism point, can you articulate a little bit more about what is so compelling or important about humanity’s potential into the deep future and which arguments are most compelling to you with a little bit of a framing here on the question of whether or not the long-termist’s perspective is compelling or motivating for the average person like, why should I care about people who are far away in time from me?

Toby Ord: So, I think that a lot of people if pressed and they’re told “does it matter equally much if a child 100 years in the future suffers as a child at some other point in time?” I think a lot of people would say, “Yeah, it matters just as much.” But that’s not how we normally think of things when we think about what charity to donate to or what policies to implement, but I do think that it’s not that foreign of an idea. In fact, the weird thing would be why it is that people in virtue of the fact that they live in different times matter different amounts.

A simple example of that would be suppose you do think that things further into the future matter less intrinsically. Economists sometimes represent this by a pure rate of time preference. It’s a component of a discount rate, which is just to do with things mattering less in the future, whereas most of the discount rate is actually to do with the fact that money is more important to have earlier which is actually a pretty solid reason, but that component doesn’t affect any of these arguments. It’s only this little extra aspect about things matter less just because we’re in the future. Suppose you have that 1% discount rate of that form. That means that someone’s older brother matters more than their younger brother, that their life is equally long and has the same kinds of experiences is fundamentally more important for their older child than the younger child, things like that. This just seems kind of crazy to most people, I think.

And similarly, if you have these exponential discount rates, which is typically the only kind that economists consider, it has these consequences that what happens in 10,000 years is way more important than what happens in 11,000 years. People don’t have any intuition like that at all, really. Maybe we don’t think that much about what happens in 10,000 years, but 11,000 is pretty much the same as 10,000 from our intuition, but these other views say, “Wow. No, it’s totally different. It’s just like the difference between what happens next year and what happens in a thousand years.”

It generally just doesn’t capture our intuitions and I think that what’s going on is not so much that we have a kind of active intuition that things that happen further into the future matter less and in fact, much less because they would have to matter a lot less to dampen the fact that we can have millions of years of future. Instead, what’s going on is that we just aren’t thinking about it. We’re not really considering that our actions could have irrevocable effects over the long distant future. And when we do think about that, such as within environmentalism, it’s a very powerful idea. The idea that we shouldn’t sacrifice, we shouldn’t make irrevocable changes to the environment that could damage the entire future just for transient benefits to our time. And people think, “Oh, yeah, that is a powerful idea.”

So I think it’s more that they’re just not aware that there are a lot of situations like this. It’s not just the case of a particular ecosystem that could be an example of one of these important irrevocable losses, but there could be these irrevocable losses at this much grander scale affecting everything that we could ever achieve and do. I should also explain there that I do talk a lot about humanity in the book. And the reason I say this is not because I think that non-human animals don’t count or they don’t have intrinsic value, I do. It’s because instead, only humanity is responsive to reasons and to thinking about this. It’s not the case that chimpanzees will choose to save other species from extinction and will go out and work out how to safeguard them from natural disasters that could threaten their ecosystems or things like that.

We’re the only ones who are even in the game of considering moral choices. So in terms of the instrumental value, humanity has this massive instrumental value, because what we do could affect, for better or for worse, the intrinsic value of all of the other species. Other species are going to go extinct in about a billion years, basically, all of them when the earth becomes uninhabitable. Only humanity could actually extend that lifespan. So there’s this kind of thing where humanity ends up being key because we are the decision makers. We are the relevant agents or any other relevant agents will spring from us. That will be things that our descendants or things that we create and choose how they function. So, that’s the kind of role that we’re playing.

Lucas Perry: So if there are people who just simply care about the short term, if someone isn’t willing to buy into these arguments about the deep future or realizing the potential of humanity’s future, like “I don’t care so much about that, because I won’t be alive for that.” There’s also an argument here that these risks may be realized within their lifetime or within their children’s lifetime. Could you expand that a little bit?

Toby Ord: Yeah, in the precipice, when I try to think about why this matters. I think the most obvious reasons are rooted in the present. The fact that it will be terrible for all of the people who are alive at the time when the catastrophe strikes. That needn’t be the case. You could imagine things that meet my definition of an existential catastrophe that it would cut off the future, but not be bad for the people who were alive at that time, maybe we all painlessly disappear at the end of our natural lives or something. But in almost all realistic scenarios that we’re thinking about, it would be terrible for all of the people alive at that time, they would have their lives cut short and witness the downfall of everything that they’ve ever cared about and believed in.

That’s a very obvious natural reason, but the reason that moves me the most is thinking about our long-term future, and just how important that is. This huge scale of everything that we could ever become. And you could think of that in very numerical terms or you could just think back over time and how far humanity has come over these 200,000 years. Imagine that going forward and how small a slice of things our own lives are and you can come up with very intuitive arguments to exceed that as well. It doesn’t have to just be multiply things out type argument.

But then I also think that there are very strong arguments that you could also have rooted in our past and in other things as well. Humanity has succeeded and has got to where we are because of this partnership of the generations. Edmund Burke had this phrase. It’s something where, if we couldn’t promulgate our ideas and innovations to the next generation, what technological level would be like. It would be like it was in the Paleolithic time, even a crude iron shovel would be forever beyond our reach. It was only through passing down these innovations and iteratively improving upon them, we could get billions of people working in cooperation over deep time to build this world around us.

If we think about the wealth and prosperity that we have the fact that we live as long as we do. This is all because this rich world was created by our ancestors and handed on to us and we’re the trustees of this vast inheritance and if we would have failed, if we’d be the first of 10,000 generations to fail to pass this on to our heirs, we will be the worst of all of these generations. We’d have failed in these very important duties and these duties could be understood as some kind of reciprocal duty to those people in the past or we could also consider it as duties to the future rooted in obligations to people in the past, because we can’t reciprocate to people who are no longer with us. The only kind of way you can get this to work is to pay it forward and have this system where we each help the next generation with the respect for the past generations.

So I think there’s another set of reasons more deontological type reasons for it and you could all have the reasons I mentioned in terms of civilizational virtues and how that kind of approach rooted in being a more virtuous civilization or species and I think that that is a powerful way of seeing it as well, to see that we’re very impatient and imprudent and so forth and we need to become more wise or alternatively, Max Tegmark has talked about this and Martin Rees, Carl Sagan and others have seen it as something based on a cosmic significance of humanity, that perhaps in all of the stars and all of the galaxies of the universe, perhaps this is the only place where there is either life at all or we’re the only place where there’s intelligent life or consciousness. There’s different versions of this and that could make this exceptionally important place and this very rare thing that could be forever gone.

So I think that there’s a whole lot of different reasons here and I think that previously, a lot of the discussion has been in a very technical version of the future directed one where people have thought, well, even if there’s only a tiny chance of extinction, our future could have 10 to the power of 30 people in it or something like that. There’s something about this argument that some people find it compelling, but not very many. I personally always found it a bit like a trick. It is a little bit like an argument that zero equals one where you don’t find it compelling, but if someone says point out the step where it goes wrong, you can’t see a step where the argument goes wrong, but you still think I’m not very convinced, there’s probably something wrong with this.

And then people who are not from the sciences, people from the humanities find it an actively alarming argument that anyone who would make moral decisions on the grounds of an argument like that. What I’m trying to do is to show that actually, there’s this whole cluster of justifications rooted in all kinds of principles that many people find reasonable and you don’t have to accept all of them by any means. The idea here is that if any one of these arguments works for you, then you can see why it is that you have reasons to care about not letting our future be destroyed in our time.

Lucas Perry: Awesome. So, there’s first this deontological argument about transgenerational duties to continue propagating the species and the projects and value which previous generations have cultivated. We inherit culture and art and literature and technology, so there is a duties-based argument to continue the stewardship and development of that. There is this cosmic significance based argument that says that consciousness may be extremely precious and rare, and that there is great value held in the balance here at the precipice on planet Earth and it’s important to guard and do the proper stewardship of that.

There is this short-term argument that says that there is some reasonable likelihood I think, total existential risk for the next century you put at one in six, which we can discuss a little bit more later, so that would also be very bad for us and our children and short-term descendants should that be realized in the next century. Then there is this argument about the potential of humanity in deep time. So I think we’ve talked a bit here about there being potentially large numbers of human beings in the future or our descendants or other things that we might find valuable, but I don’t think that we’ve touched on the part and change of quality.

There are these arguments on quantity, but there’s also I think, I really like how David Pearce puts it where he says, “One day we may have thoughts as beautiful as sunsets.” So, could you expand a little bit here this argument on quality that I think also feeds in and then also with regards to the digitalization aspect that may happen, that there are also arguments around subjective time dilation, which may lead to more better experience into the deep future. So, this also seems to be another important aspect that’s motivating for some people.

Toby Ord: Yeah. Humanity has come a long way and various people have tried to catalog the improvements in our lives over time. Often in history, this is not talked about, partly because history is normally focused on something of the timescale of a human life and things don’t change that much on that timescale, but when people are thinking about much longer timescales, I think they really do. Sometimes this is written off in history as Whiggish history, but I think that that’s a mistake.

I think that if you were to summarize the history of humanity in say, one page, I think that the dramatic increases in our quality of life and our empowerment would have to be mentioned. It’s so important. You probably wouldn’t mention the Black Death, but you would mention this. Yet, it’s very rarely talked about within history, but there are people talking about it and there are people who have been measuring these improvements. And I think that you can see how, say in the last 200 years, lifespans have more than doubled and in fact, even in the poorest countries today, lifespans are longer than they were in the richest countries 200 years ago.

We can now almost all read whereas very few people could read 200 years ago. We’re vastly more wealthy. If you think about this threshold we currently use of extreme poverty, it used to be the case 200 years ago that almost everyone was below that threshold. People were desperately poor and now almost everyone is above that threshold. There’s still so much more that we could do, but there have been these really dramatic improvements.

Some people seem to think that that story of well-being in our lives getting better, increasing freedoms, increasing empowerment of education and health, they think that that story runs somehow counter to their concern about existential risk that one is an optimistic story and one’s a gloomy story. Ultimately, what I’m thinking is that it’s because these trends seem to point towards very optimistic futures that would make it all the more important to ensure that we survive to reach such futures. If all the trends suggested that the future was just going to inevitably move towards a very dreary thing that had hardly any value in it, then I wouldn’t be that concerned about existential risk, so I think these things actually do go together.

And it’s not just in terms of our own lives that things have been getting better. We’ve been making major institutional reforms, so while there is regrettably still slavery in the world today, there is much less than there was in the past and we have been making progress in a lot of ways in terms of having a more representative and more just and fair world and there’s a lot of room to continue in both those things. And even then, a world that’s kind of like the best lives lived today, a world that has very little injustice or suffering, that’s still only a lower bound on what we could achieve.

I think one useful way to think about this is in terms of your peak experiences. These moments of luminous joy or beauty, the moments that you’ve been happiest, whatever they may be and you think about how much better they are than the typical moments. My typical moments are by no means bad, but I would trade hundreds or maybe thousands for more of these peak experiences, and that’s something where there’s no fundamental reason why we couldn’t spend much more of our lives at these peaks and have lives which are vastly better than our lives are today and that’s assuming that we don’t find even higher peaks and new ways to have even better lives.

It’s not just about the well-being in people’s lives either. If you have any kind of conception about the types of value that humanity creates, so much of our lives will be in the future, so many of our achievements will be in the future, so many of our societies will be in the future. There’s every reason to expect that these greatest successes in all of these different ways will be in this long future as well. There’s also a host of other types of experiences that might become possible. We know that humanity only has some kind of very small sliver of the space of all possible experiences. We see in a set of colors, this three-dimensional color space.

We know that there are animals that see additional color pigments, that can see ultraviolet, can see parts of reality that we’re blind to. Animals with magnetic sense that can sense what direction north is and feel the magnetic fields. What’s it like to experience things like that? We could go so much further exploring this space. If we can guarantee our future and then we can start to use some of our peak experiences as signposts to what might be experienceable, I think that there’s so much further that we could go.

And then I guess you mentioned the possibilities of digital things as well. We don’t know exactly how consciousness works. In fact, we know very little about how it works. We think that there’s some suggestive reasons to think that minds including consciousness are computational things such that we might be able to realize them digitally and then there’s all kinds of possibilities that would follow from that. You could slow yourself down like slow down the rate at which you’re computed in order to see progress zoom past you and kind of experience a dizzying rate of change in the things around you. Fast forwarding through the boring bits and skipping to the exciting bits one’s life if one was digital could potentially be immortal, have backup copies, and so forth.

You might even be able to branch into being two different people, have some choice coming up as to say whether to stay on earth or to go to this new settlement in the stars, and just split with one copy go into this new life and one staying behind or a whole lot of other possibilities. We don’t know if that stuff is really possible, but it’s just to kind of give a taste of how we might just be seeing this very tiny amount of what’s possible at the moment.

Lucas Perry: This is one of the most motivating arguments for me, the fact that the space of all possible minds is probably very large and deep and that the kinds of qualia that we have access to are very limited and the possibility of well-being not being contingent upon the state of the external world which is always in flux and is always impermanent, we’re able to have a science of well-being that was sufficiently well-developed such that well-being was information and decision sensitive, but not contingent upon the state of the external world that seems like a form of enlightenment in my opinion.

Toby Ord: Yeah. Some of these questions are things that you don’t often see discussed in academia, partly because there isn’t really a proper discipline that says that that’s the kind of thing you’re allowed to talk about in your day job, but it is the kind of thing that people are allowed to talk about in science fiction. Many science fiction authors have something more like space opera or something like that where the future is just an interesting setting to play out the dramas that we recognize.

But other people use the setting to explore radical, what if questions, many of which are very philosophical and some of which are very well done. I think that if you’re interested in these types of questions, I would recommend people read Diaspora by Greg Egan, which I think is the best and most radical exploration of this and at the start of the book, it’s a setting in a particular digital system with digital minds substantially in the future from where we are now that have been running much faster than the external world. Their lives lived thousands of times faster than the people who’ve remained flesh and blood, so culturally that vastly further on, and then you get to witness what it might be like to undergo various of these events in one’s life. And in the particular setting it’s in. It’s a world where physical violence is against the laws of physics.

So rather than creating utopia by working out how to make people better behaved, the longstanding project have tried to make us all act nicely and decently to each other. That’s clearly part of what’s going on, but there’s this extra possibility that most people hadn’t even thought about, where because it’s all digital. It’s kind of like being on a web forum or something like that, where if someone attempts to attack you, you can just make them disappear, so that they can no longer interfere with you at all. And it explores what life might be like in this kind of world where the laws of physics are consent based and you can just make it so that people have no impact on you if you’re not enjoying the kind of impact that they’re having is a fascinating setting to explore radically different ideas about the future, which very much may not come to pass.

But what I find exciting about these types of things is not so much that they’re projections of where the future will be, but that if you take a whole lot of examples like this, they span a space that’s much broader than you were initially thinking about for your probability distribution over where the future might go and they help you realize that there are radically different ways that it could go. This kind of expansion of your understanding about the space of possibilities, which is where I think it’s best as opposed to as a direct prediction that I would strongly recommend some Greg Egan for anyone who wants to get really into that stuff.

Lucas Perry: You sold me. I’m interested in reading it now. I’m also becoming mindful of our time here and have a bunch more questions I would like to get through, but before we do that, I also want to just throw out here. I’ve had a bunch of conversations recently on the question of identity and open individualism and closed individualism and empty individualism are some of the views here.

For the long-termist perspective, I think that it’s pretty much very or deeply informative for how much or how little one may care about the deep future or digital minds or our descendants in a million years or humans that are around a million years later. I think for many people who won’t be motivated by these arguments, they’ll basically just feel like it’s not me, so who cares? And so I feel like these questions on personal identity really help tug and push and subvert many of our commonly held intuitions about identity. So, sort of going off of your point about the potential of the future and how it’s quite beautiful and motivating.

A little funny quip or thought there is I’ve sprung into Lucas consciousness and I’m quite excited, whatever “I” means, for there to be like awakening into Dyson sphere consciousness in Andromeda or something, and maybe a bit of a wacky or weird idea for most people, but thinking more and more endlessly about the nature of personal identity makes thoughts like these more easily entertainable.

Toby Ord: Yeah, that’s interesting. I haven’t done much research on personal identity. In fact, the types of questions I’ve been thinking about when it comes to the book are more on how radical change would be needed before it’s no longer humanity, so kind of like the identity of humanity across time as opposed to the identity for a particular individual across time. And because I’m already motivated by helping others and I’m kind of thinking more about the question of why just help others in our own time as opposed to helping others across time. How do you direct your altruism, your altruistic impulses?

But you’re right that they could also be possibilities to do with individuals lasting into the future. There’s various ideas about how long we can last with lifespans extending very rapidly. It might be that some of the people who are alive now actually do directly experience some of this long-term future. Maybe there are things that could happen where their identity wouldn’t be preserved, because it’d be too radical a break. You’d become two different kinds of being and you wouldn’t really be the same person, but if being the same person is important to you, then maybe you could make smaller changes. I’ve barely looked into this at all. I know Nick Bostrom has thought about it more. There’s probably lots of interesting questions there.

Lucas Perry: Awesome. So could you give a short overview of natural or non-anthropogenic risks over the next century and why they’re not so important?

Toby Ord: Yeah. Okay, so the main natural risks I think we’re facing are probably asteroid or comet impacts and super volcanic eruptions. In the book, I also looked at stellar explosions like supernova and gamma ray bursts, although since I estimate the chance of us being wiped out by one of those in the next 100 years to be one in a billion, we don’t really need to worry about those.

But asteroids, it does appear that the dinosaurs were destroyed 65 million years ago by a major asteroid impact. It’s something that’s been very well studied scientifically. I think the main reason to think about it is A, because it’s very scientifically understood and B, because humanity has actually done a pretty good job on it. We only worked out 40 years ago that the dinosaurs were destroyed by an asteroid and that they could be capable of causing such a mass extinction. In fact, it was only in 1960, 60 years ago that we even confirmed that craters on the Earth’s surface were caused by asteroids. So we knew very little about this until recently.

And then we’ve massively scaled up our scanning of the skies. We think that in order to cause a global catastrophe, the asteroid would probably need to be bigger than a kilometer across. We’ve found about 95% of the asteroids between 1 and 10 kilometers across, and we think we’ve found all of the ones bigger than 10 kilometers across. We therefore know that since none of the ones were found are on a trajectory to hit us within the next 100 years that it looks like we’re very safe from asteroids.

Whereas super volcanic eruptions are much less well understood. My estimate for those for the chance that we could be destroyed in the next 100 years by one is about one in 10,000. In the case of asteroids, we have looked into it so carefully and we’ve managed to check whether any are coming towards us right now, whereas it can be hard to get these probabilities further down until we know more, so that’s why my what about the super volcanic corruptions is where it is. That the Toba eruption was some kind of global catastrophe a very long time ago, though the early theories that it might have caused a population bottleneck and almost destroyed humanity, they don’t seem to hold up anymore. It is still illuminating of having continent scale destruction and global cooling.

Lucas Perry: And so what is your total estimation of natural risk in the next century?

Toby Ord: About one in 10,000. All of these estimates are in order of magnitude estimates, but I think that it’s about the same level as I put the super volcanic eruption and the other known natural risks I would put as much smaller. One of the reasons that we can say these low numbers is because humanity has survived for 2000 centuries so far, and related species such as Homo erectus have survived for even longer. And so we just know that there can’t be that many things that could destroy all humans on the whole planet from these natural risks,

Lucas Perry: Right, the natural conditions and environment hasn’t changed so much.

Toby Ord: Yeah, that’s right. I mean, this argument only works if the risk has either been constant or expectably constant, so it could be that it’s going up and down, but we don’t know which then it will also work. The problem is if we have some pretty good reasons to think that the risks could be going up over time, then our long track record is not so helpful. And that’s what happens when it comes to what you could think of as natural pandemics, such as the coronavirus.

This is something where it’s got into humanity through some kind of human action, so it’s not exactly natural how it actually got into humanity in the first place and then its spread through humanity through airplanes, traveling to different continents very quickly, is also not natural and is a faster spread than you would have had over this long-term history of humanity. And thus, these kind of safety arguments don’t count as well as they would for things like asteroid impacts.

Lucas Perry: This class of risks then is risky, but less risky than the human-made risks, which are a result of technology, the fancy x-risk jargon for this is anthropogenic risks. Some of these are nuclear weapons, climate change, environmental damage, synthetic bio-induced pandemics or AI-enabled pandemics, unaligned artificial intelligence, dystopian scenarios and other risks. Could you say a little bit about each of these and why you view unaligned artificial intelligence as the biggest risk?

Toby Ord: Sure. Some of these anthropogenic risks we already face. Nuclear war is an example. What is particularly concerning is a very large scale nuclear war, such as between the U.S. and Russia and nuclear winter models have suggested that the soot from burning buildings could get lifted up into the stratosphere which is high enough that it wouldn’t get rained out, so it could stay in the upper atmosphere for a decade or more and cause widespread global cooling, which would then cause massive crop failures, because there’s not enough time between frosts to get a proper crop, and thus could lead to massive starvation and a global catastrophe.

Carl Sagan suggested it could potentially lead to our extinction, but the current people working on this, while they are very concerned about it, don’t suggest that it could lead to human extinction. That’s not really a scenario that they find very likely. And so even though I think that there is substantial risk of nuclear war over the next century, either an accidental nuclear war being triggered soon or perhaps a new Cold War, leading to a new nuclear war, I would put the chance that humanity’s potential is destroyed through nuclear war at about one in 1000 over the next 100 years, which is about where I’d put it for climate change as well.

There is debate as to whether climate change could really cause human extinction or a permanent collapse of civilization. I think the answer is that we don’t know. Similar with nuclear war, but they’re both such large changes to the world, these kind of unprecedentedly rapid and severe changes that it’s hard to be more than 99% confident that if that happens that we’d make it through and so this is difficult to eliminate risk that remains there.

In the book, I look at the very worst climate outcomes, how much carbon is there in the methane clathrates under the ocean and in the permafrost? What would happen if it was released? How much warming would there be? And then what would happen if you had very severe amounts of warming such as 10 degrees? And I try to sketch out what we know about those things and it is difficult to find direct mechanisms that suggests that we would go extinct or that we would collapse our civilization in a way from which you could never be restarted again, despite the fact that civilization arose five times independently in different parts of the worlds already, so we know that it’s not like a fluke to get it started again. So it’s difficult to see the direct reasons why it could happen, but we don’t know enough to be sure that it can’t happen. In my sense, that’s still an existential risk.

Then I also have a kind of catch all for other types of environmental damage, all of these other pressures that we’re putting on the planet. I think that it would be too optimistic to be sure that none of those could potentially cause a collapse from which we can never recover as well. Although when I look at particular examples that are suggested, such as the collapse of pollinating insects and so forth, for the particular things that are suggested, it’s hard to see how they could cause this, so it’s not that I am just seeing problems everywhere, but I do think that there’s something to this general style of argument that unknown effects of the stressors we’re putting on the planet could be the end for us.

So I’d put all of those kind of current types of risks at about one in 1,000 over the next 100 years, but then it’s the anthropogenic risks from technologies that are still on the horizon that scare me the most and this would be in keeping with this idea of humanity’s continued exponential growth in power where you’d expect the risks to be escalating every century. And I think that the ones that I’m most concerned about, in particular, engineered pandemics and the risk of unaligned artificial intelligence.

Lucas Perry: All right. I think listeners will be very familiar with many of the arguments around why unaligned artificial intelligence is dangerous, so I think that we could skip some of the crucial considerations there. Could you touch a little bit then on the risks of engineered pandemics, which may be more new and then give a little bit of your total risk estimate for this class of risks.

Toby Ord: Ultimately, we do have some kind of a safety argument in terms of the historical record when it comes to these naturally arising pandemics. There are ways that they could be more dangerous now than they could have been in the past, but there are also many ways in which they’re less dangerous. We have antibiotics. We have the ability to detect in real time these threats, sequence the DNA of the things that are attacking us, and then use our knowledge of quarantine and medicine in order to fight them. So we have reasons to look to our safety on that.

But there are cases of pandemics or pandemic pathogens being created to be even more spreadable or even more deadly than those that arise naturally because the natural ones are not being optimized to be deadly. The deadliness is only if that’s in service of them spreading and surviving and normally killing your host is a big problem for that. So there’s room there for people to try to engineer things to be worse than the natural ones.

One case is scientists looking to fight disease, like Ron Fouchier with the bird flu, deliberately made a more infectious version of it that could be transmitted directly from mammal to mammal. He did that because he was trying to help, but it was, I think, very risky and I think a very bad move and most of the scientific community didn’t think it was a good idea. He did it in a bio safety level three enhanced lab, which is not the highest level of biosecurity, that’s BSL four, and even at the highest level, there have been an escape of a pathogen from a BSL four facility. So these labs aren’t safe enough, I think, to be able to work on newly enhanced things that are more dangerous than anything that nature can create in a world where so far the biggest catastrophes that we know of were caused by pandemics. So I think that it’s pretty crazy to be working on such things until we have labs from which nothing has ever escaped.

But that’s not what really worries me. What worries me more is bio weapons programs and there’s been a lot of development of bio weapons in the 20th Century, in particular. The Soviet Union reportedly had 20 tons of smallpox that they had manufactured for example, and they had an accidental release of smallpox, which killed civilians in Russia. They had an accidental release of anthrax, blowing it out across the whole city and killing many people, so we know from cases like this, that they had a very large bioweapons program. And the Biological Weapons Convention, which is the leading institution at an international level to prohibit bio weapons is chronically underfunded and understaffed. The entire budget of the BWC is less than that of a typical McDonald’s.

So this is something where humanity doesn’t have its priorities in order. Countries need to work together to step that up and to give it more responsibilities, to actually do inspections and make sure that none of them are using bio weapons. And then I’m also really concerned by the dark side of the democratization of biotechnology. The fact that rapid developments that we make with things like Gene Drives and CRISPR. These two huge breakthroughs. They’re perhaps Nobel Prize worthy. That in both cases within two years, they are replicated by university students in science competitions.

So we now have a situation where two years earlier, there’s like one person in the world who could do it or no one who could do it, then one person and then within a couple of years, we have perhaps tens of thousands of people who could do it, soon millions. And so if that pool of people eventually includes people like those in the Aum Shinrikyo cults that was responsible for the Sarin gas in the Tokyo subway, who actively one of their goals was to destroy everyone in the world. Once enough people can do these things and could make engineered pathogens, you’ll get someone with this terrible but massively rare motivation, or perhaps even just a country like North Korea who wants to have a kind of blackmail policy to make sure that no one ever invades. That’s why I’m worried about that. These rapid advances are empowering us to make really terrible weapons.

Lucas Perry: All right, so wrapping things up here. How do we then safeguard the potential for humanity and Earth-originating intelligent life? You seem to give some advice on high level strategy, policy and individual level advice, and this is all contextualized within this grand plan for humanity, which is that we reach existential security by getting to a place where existential risk is decreasing every century that we then enter a period of long reflection to contemplate and debate what is good and how we might explore the universe and optimize it to express that good and then that we execute that and achieve our potential. So again, how do we achieve all this, how do we mitigate x-risk, how do we safeguard the potential of humanity?

Toby Ord: That’s an easy question to end on. So what I tried to do in the book is to try to treat this at a whole lot of different levels. You kind of refer to the most abstract level to some extent, the point of that abstract level is to show that we don’t need to get ultimate success right now, we don’t need to solve everything, we don’t need to find out what the fundamental nature of goodness is, and what worlds would be the best. We just need to make sure we don’t end up in the ones which are clearly among the worst.

The point of looking further onwards with the strategy is just to see that we can set some things aside for later. Our task now is to reach what I call existential security and that involves this idea that will be familiar to many people to do with existential risk, which is to look at particular risks and to work out how to manage them, and to avoid falling victim to them, perhaps by being more careful with technology development, perhaps by creating our protective technologies. For example, better bio surveillance systems to understand if bio weapons have been launched into the environment, so that we could contain them much more quickly or to develop say a better work on alignment with AI research.

But it also involves not just fighting fires, but trying to become the kind of society where we don’t keep lighting these fires. I don’t mean that we don’t develop the technologies, but that we build in the responsibility for making sure that they do not develop into existential risks as part of the cost of doing business. We want to get the fruits of all of these technologies, both for the long-term and also for the short-term, but we need to be aware that there’s this shadow cost when we develop new things, and we blaze forward with technology. There’s shadow cost in terms of risk, and that’s not normally priced in. We just kind of ignore that, but eventually it will come due. If we keep developing things that produce these risks, eventually, it’s going to get us.

So what we need to do to develop our wisdom, both in terms of changing our common sense conception of morality, to take this long-term future seriously or our debts to our ancestors seriously, and we also need the international institutions to help avoid some of these tragedies of the commons and so forth as well, to find these cases where we’d all be prepared to pay the cost to get the security if everyone else was doing it, but we’re not prepared to just do it unilaterally. We need to try to work out mechanisms where we can all go into it together.

There are questions there in terms of policy. We need more policy-minded people within the science and technology space. People with an eye to the governance of their own technologies. This can be done within professional societies, but also we need more technology-minded people in the policy space. We often are bemoan the fact that a lot of people in government don’t really know much about how the internet works or how various technologies work, but part of the problem is that the people who do know about how these things work, don’t go into government. It’s not just that you can blame the people in government for not knowing about your field. People who know about this field, maybe some of them should actually work in policy.

So I think we need to build that bridge from both sides and I suggest a lot of particular policy things that we could do. A good example in terms of how concrete and simple it can get is that we renew the New START Disarmament Treaty. This is due to expire next year. And as far as I understand, the U.S. government and Russia don’t have plans to actually renew this treaty, which is crazy, because it’s one of the things that’s most responsible for the nuclear disarmament. So, making sure that we sign that treaty again, it is a very actionable point that people can kind of motivate around and so on.

And I think that there’s stuff for everyone to do. We may think that existential risk is too abstract and can’t really motivate people in the way that some other causes can, but I think that would be a mistake. I’m trying to sketch a vision of it in this book that I think can have a larger movement coalesce around it and I think that if we look back a bit when it came to nuclear war, the largest protest in America’s history at that time was against nuclear weapons in Central Park in New York and it was on the grounds that this could be the end of humanity. And that the largest movement at the moment, in terms of standing up for a cause is on climate change and it’s motivated by exactly these ideas about irrevocable destruction of our heritage. It really can motivate people if it’s expressed the right way. And so that actually fills me with hope that things can change.

And similarly, when I think about ethics, and I think about how in the 1950s, there was almost no consideration of the environment within their conception of ethics. It just was considered totally outside of the domain of ethics or morality and not really considered much at all. And the same with animal welfare, it was scarcely considered to be an ethical question at all. And now, these are both key things that people are taught in their moral education in school. And we have an entire ministry for the environment and that was within 10 years of Silent Spring coming out, I think all, but one English speaking country had a cabinet level position on the environment.

So, I think that we really can have big changes in our ethical perspective, but we need to start an expansive conversation about this and start unifying these things together not to be just like the anti-nuclear movement and the anti-climate change movement where it’s fighting a particular fire, but to be aware that if we want to actually get out there preemptively for these things that we need to expand that to this general conception of existential risk and safeguarding humanity’s long-term potential, but I’m optimistic that we can do that.

That’s why I think my best guess is that there’s a one in six chance that we don’t make it through this Century, but the other way around, I’m saying there’s a five in six chance that I think we do make it through. If we really played our cards right, we could make it a 99% chance that we make it through this Century. We’re not hostages to fortune. We humans get to decide what the future of humanity will be like. There’s not much risk from external forces that we can’t deal with such as the asteroids. Most of the risk is of our own doing and we can’t just sit here and bemoan the fact we’re in some difficult prisoner’s dilemma with ourselves. We need to get out and solve these things and I think we can.

Lucas Perry: Yeah. This point on moving from these particular motivation and excitement around climate change and nuclear weapons issues to a broader civilizational concern with existential risk seems to be a crucial and key important step in developing the kind of wisdom that we talked about earlier. So yeah, thank you so much for coming on and thanks for your contribution to the field of existential risk with this book. It’s really wonderful and I recommend listeners read it. If listeners are interested in that, where’s the best place to pick it up? How can they follow you?

Toby Ord: You could check out my website at tobyord.com. You could follow me on Twitter @tobyordoxford or I think the best thing is probably to find out more about the book at theprecipice.com. On that website, we also have links as to where you can buy it in your country, including at independent bookstores and so forth.

Lucas Perry: All right, wonderful. Thanks again, for coming on and also for writing this book. I think that it’s really important for helping to shape the conversation in the world and understanding around this issue and I hope we can keep nailing down the right arguments and helping to motivate people to care about these things. So yeah, thanks again for coming on.

Toby Ord: Well, thank you. It’s been great to be here.

FLI Podcast: Existential Hope in 2020 and Beyond with the FLI Team

As 2019 is coming to an end and the opportunities of 2020 begin to emerge, it’s a great time to reflect on the past year and our reasons for hope in the year to come. We spend much of our time on this podcast discussing risks that will possibly lead to the extinction or the permanent and drastic curtailing of the potential of Earth-originating intelligent life. While this is important and useful, much has been done at FLI and in the broader world to address these issues in service of the common good. It can be skillful to reflect on this progress to see how far we’ve come, to develop hope for the future, and to map out our path ahead. This podcast is a special end of the year episode focused on meeting and introducing the FLI team, discussing what we’ve accomplished and are working on, and sharing our feelings and reasons for existential hope going into 2020 and beyond.

Topics discussed include:

  • Introductions to the FLI team and our work
  • Motivations for our projects and existential risk mitigation efforts
  • The goals and outcomes of our work
  • Our favorite projects at FLI in 2019
  • Optimistic directions for projects in 2020
  • Reasons for existential hope going into 2020 and beyond

Timestamps:

0:00 Intro

1:30 Meeting the Future of Life Institute team

18:30 Motivations for our projects and work at FLI

30:04 What we strive to result from our work at FLI

44:44 Favorite accomplishments of FLI in 2019

01:06:20 Project directions we are most excited about for 2020

01:19:43 Reasons for existential hope in 2020 and beyond

01:38:30 Outro

 

You can listen to the podcast above, or read the full transcript below. All of our podcasts are also now on Spotify and iHeartRadio! Or find us on SoundCloudiTunesGoogle Play and Stitcher.

Lucas Perry: Welcome to the Future of Life Institute Podcast. I’m Lucas Perry. Today’s episode is a special end of the year episode structured as an interview with members of the FLI core team. The purpose of this episode is to introduce the members of our team and their roles, explore the projects and work we’ve been up to at FLI throughout the year, and discuss future project directions we are excited about for 2020. Some topics we explore are the motivations behind our work and projects, what we are hoping will result from them, favorite accomplishments at FLI in 2019, and general trends and reasons we see for existential hope going into 2020 and beyond.

If you find this podcast interesting and valuable, you can follow us on your preferred listening platform like on itunes, soundcloud, google play, stitcher, and spotify

If you’re curious to learn more about the Future of Life Institute, our team, our projects, and our feelings about the state and ongoing efforts related to existential risk mitigation, then I feel you’ll find this podcast valuable. So, to get things started, we’re going to have the team introduce ourselves, and our role(s) at the Future of life Institute

Jared Brown: My name is Jared Brown, and I’m the Senior Advisor for Government Affairs at the Future of Life Institute. I help inform and execute FLI’s strategic advocacy work on governmental policy. It’s sounds a little bit behind the scenes because it is, but I primarily work in the U.S. and in global forums like the United Nations.

Kirsten Gronlund: My name is Kirsten and I am the Editorial Director for The Future of Life Institute. Basically, I run the website. I also create new content and manage the content that’s being created to help communicate the issues that FLI works on. I have been helping to produce a lot of our podcasts. I’ve been working on getting some new long form articles written; we just came out with one about CRISPR and gene drives. Right now I’m actually working on putting together a book list for recommended reading for things related to effective altruism and AI and existential risk. I also do social media, and write the newsletter, and a lot of things. I would say that my job is to figure out what is most important to communicate about what FLI does, and then to figure out how it’s best to communicate those things to our audience. Experimenting with different forms of content, experimenting with different messaging. Communication, basically, and writing and editing.

Meia Chita-Tegmark: I am Meia Chita-Tegmark. I am one of the co-founders of the Future of Life Institute. I am also the treasurer of the Institute, and recently I’ve been focusing many of my efforts on the Future of Life website and our outreach projects. For my day job, I am a postdoc in the human-robot interaction lab at Tufts University. My training is in social psychology, so my research actually focuses on the human end of the human-robot interaction. I mostly study uses of assistive robots in healthcare and I’m also very interested in ethical implications of using, or sometimes not using, these technologies. Now, with the Future of Life Institute, as a co-founder, I am obviously involved in a lot of the decision-making regarding the different projects that we are pursuing, but my main focus right now is the FLI website and our outreach efforts.

Tucker Davey: I’m Tucker Davey. I’ve been a member of the FLI core team for a few years. And for the past few months, I’ve been pivoting towards focusing on projects related to FLI’s AI communication strategy, various projects, especially related to advanced AI and artificial general intelligence, and considering how FLI can best message about these topics. Basically these projects are looking at what we believe about the existential risk of advanced AI, and we’re working to refine our core assumptions and adapt to a quickly changing public understanding of AI. In the past five years, there’s been much more money and hype going towards advanced AI, and people have new ideas in their heads about the risk and the hope from AI. And so, our communication strategy has to adapt to those changes. So that’s kind of a taste of the questions we’re working on, and it’s been really interesting to work with the policy team on these questions.

Jessica Cussins Newman: My name is Jessica Cussins Newman, and I am an AI policy specialist with the Future of Life Institute. I work on AI policy, governance, and ethics, primarily. Over the past year, there have been significant developments in all of these fields, and FLI continues to be a key stakeholder and contributor to numerous AI governance forums. So it’s been exciting to work on a team that’s helping to facilitate the development of safe and beneficial AI, both nationally and globally. To give an example of some of the initiatives that we’ve been involved with this year, we provided comments to the European Commission’s high level expert group on AI, to the Defense Innovation Board’s work on AI ethical principles, to the National Institute of Standards and Technology, or NIST, which developed a plan for federal engagement on technical AI standards.

We’re also continuing to participate in several multi-stakeholder initiatives, such as the Partnership on AI, the CNAS AI Task Force, and the UN Secretary General’s high level panel, and additional cooperation among others. I think all of this is helping to lay the groundwork for a more trustworthy AI, and we’ve also been engaged with direct policy engagement. Earlier this year we co-hosted an AI policy briefing at the California state legislature, and met with the White House Office of Science and Technology Policy. Lastly, on the educational side of this work, we maintain an online resource for global AI policy. So this includes information about national AI strategies and provides background resources and policy recommendations around some of the key issues.

Ian Rusconi: My name is Ian Rusconi and I edit and produce these podcasts. Since FLI’s podcasts aren’t recorded in a controlled studio setting, the interviews often come with a host of technical issues, so some of what I do for these podcasts overlaps with forensic audio enhancement, removing noise from recordings; removing as much of the reverb as possible from recordings, which works better sometimes than others; removing clicks and pops and sampling errors and restoring the quality of clipping audio that was recorded too loudly. And then comes the actual editing, getting rid of all the breathing and lip smacking noises that people find off-putting, and cutting out all of the dead space and vocal dithering, um, uh, like, you know, because we aim for a tight final product that can sometimes end up as much as half the length of the original conversation even before any parts of the conversation are cut out.

Part of working in an audio only format is keeping things to the minimum amount of information required to get your point across, because there is nothing else that distracts the listener from what’s going on. When you’re working with video, you can see people’s body language, and that’s so much of communication. When it’s audio only, you can’t. So a lot of the time, if there is a divergent conversational thread that may be an interesting and related point, it doesn’t actually fit into the core of the information that we’re trying to access, and you can construct a more meaningful narrative by cutting out superfluous details.

Emilia Javorsky: My name’s Emilia Javorsky and at the Future of Life Institute, I work on the topic of lethal autonomous weapons, mainly focusing on issues of education and advocacy efforts. It’s an issue that I care very deeply about and I think is one of the more pressing ones of our time. I actually come from a slightly atypical background to be engaged in this issue. I’m a physician and a scientist by training, but what’s conserved there is a discussion of how do we use AI in high stakes environments where life and death decisions are being made. And so when you are talking about the decisions to prevent harm, which is my field of medicine, or in the case of lethal autonomous weapons, the decision to enact lethal harm, there’s just fundamentally different moral questions, and also system performance questions that come up.

Key ones that I think about a lot are system reliability, accountability, transparency. But when it comes to thinking about lethal autonomous weapons in the context of the battlefield, there’s also this inherent scalability issue that arises. When you’re talking about scalable weapon systems, that quickly introduces unique security challenges in terms of proliferation and an ability to become what you could quite easily define as weapons of mass destruction. 

There’s also the broader moral questions at play here, and the question of whether we as a society want to delegate the decision to take a life to machines. And I personally believe that if we allow autonomous weapons to move forward and we don’t do something to really set a stake in the ground, it could set an irrecoverable precedent when we think about getting ever more powerful AI aligned with our values in the future. It is a very near term issue that requires action.

Anthony Aguirre: I’m Anthony Aguirre. I’m a professor of physics at the University of California at Santa Cruz, and I’m one of FLI’s founders, part of the core team, and probably work mostly on the policy related aspects of artificial intelligence and a few other topics. 

I’d say there are two major efforts that I’m heading up. One is the overall FLI artificial intelligence policy effort. That encompasses a little bit of our efforts on lethal autonomous weapons, but it’s mostly about wider issues of how artificial intelligence development should be thought about, how it should be governed, what kind of soft or hard regulations might we contemplate about it. Global efforts which are really ramping up now, both in the US and Europe and elsewhere, to think about how artificial intelligence should be rolled out in a way that’s kind of ethical, that keeps with the ideals of society, that’s safe and robust and in general is beneficial, rather than running into a whole bunch of negative side effects. That’s part of it.

And then the second thing is I’ve been thinking a lot about what sort of institutions and platforms and capabilities might be useful for society down the line that we can start to create, and nurture and grow now. So I’ve been doing a lot of thinking about… let’s imagine that we’re in some society 10 or 20 or 30 years from now that’s working well, how did it solve some of the problems that we see on the horizon? If we can come up with ways that this fictitious society in principle solved those problems, can we try to lay the groundwork for possibly actually solving those problems by creating new structures and institutions now that can grow into things that could help solve those problems in the future?

So an example of that is Metaculus. This is a prediction platform that I’ve been involved with in the last few years. So this is an effort to create a way to better predict what’s going to happen and make better decisions, both for individual organizations and FLI itself, but just for the world in general. This is kind of a capability that it would be good if the world had, making better predictions about all kinds of things and making better decisions. So that’s one example, but there are a few others that I’ve been contemplating and trying to get spun up.

Max Tegmark: Hi, I’m Max Tegmark, and I think of myself as having two jobs. During the day, I do artificial intelligence research at MIT, and on nights and weekends, I help lead the Future of Life Institute. My day job at MIT used to be focused on cosmology, because I was always drawn to the very biggest questions. The bigger the better, and studying our universe and its origins seemed to be kind of as big as it gets. But in recent years, I’ve felt increasingly fascinated that we have to understand more about how our own brains work, how our intelligence works, and building better artificial intelligence. Asking the question, how can we make sure that this technology, which I think is going to be the most powerful ever, actually becomes the best thing ever to happen to humanity, and not the worst.

Because all technology is really a double-edged sword. It’s not good or evil, it’s just a tool that we can do good or bad things with. If we think about some of the really horrible things that have happened because of AI systems, so far, it’s largely been not because of evil, but just because people didn’t understand how the system worked, and it did something really bad. So what my MIT research group is focused on is exactly tackling that. How can you take today’s AI systems, which are often very capable, but total black boxes… So that if you ask your system, “Why should this person be released on probation, but not this one?” You’re not going to get any better answer than, “I was trained on three terabytes of data and this is my answer. Beep, beep. Boop, boop.” Whereas, I feel we really have the potential to make systems that are just as capable, and much more intelligible. 

Trust should be earned and trust should be built based on us actually being able to peek inside the system and say, “Ah, this is why it works.” And the reason we have founded the Future of Life Institute was because all of us founders, we love technology, and we felt that the reason we would prefer living today rather than any time in the past, is all because of technology. But, for the first time in cosmic history, this technology is also on the verge of giving us the ability to actually self-destruct as a civilization. If we build AI, which can amplify human intelligence like never before, and eventually supersede it, then just imagine your least favorite leader on the planet, and imagine them having artificial general intelligence so they can impose their will on the rest of Earth.

How does that make you feel? It does not make me feel great, and I had a New Year’s resolution in 2014 that I was no longer allowed to complain about stuff if I didn’t actually put some real effort into doing something about it. This is why I put so much effort into FLI. The solution is not to try to stop technology, it just ain’t going to happen. The solution is instead win what I like to call the wisdom race. Make sure that the wisdom with which we manage our technology grows faster than the power of the technology.

Lucas Perry: Awesome, excellent. As for me, I’m Lucas Perry, and I’m the project manager for the Future of Life Institute. I’ve been with FLI for about four years now, and have focused on enabling and delivering projects having to do with existential risk mitigation. Beyond basic operations tasks at FLI that help keep things going, I’ve seen my work as having three cornerstones, these being supporting research on technical AI alignment, on advocacy relating to existential risks and related issues, and on direct work via our projects focused on existential risk. 

In terms of advocacy related work, you may know me as the host of the AI Alignment Podcast Series, and more recently the host of the Future of Life Institute Podcast. I see my work on the AI Alignment Podcast Series as promoting and broadening the discussion around AI alignment and AI safety to a diverse audience of both technical experts and persons interested in the issue.

There I am striving to include a diverse range of voices from many different disciplines, in so far as they can inform the AI alignment problem. The Future of Life Institute Podcast is a bit more general, though often dealing with related issues. There I strive to have conversations about avant garde subjects as they relate to technological risk, existential risk, and cultivating the wisdom with which to manage powerful and emerging technologies. For the AI Alignment Podcast, our most popular episode of all time so far is On Becoming a Moral Realist with Peter Singer, and a close second and third were On Consciousness, Qualia, and Meaning with Mike Johnson and Andres Gomez Emilsson, and An Overview of Technical AI Alignment with Rohin Shah. There are two parts to that podcast. These were really great episodes, and I suggest you check them out if they sound interesting to you. You can do that under the podcast tab on our site or by finding us on your preferred listening platform.

As for the main FLI Podcast Series, our most popular episodes have been an interview with FLI President Max Tegmark called Life 3.0: Being Human in the Age of Artificial intelligence. A podcast similar to this one last year, called Existential Hope in 2019 and Beyond was the second most listened to FLI podcast. And then the third is a more recent podcast called The Climate Crisis As An Existential Threat with Simon Beard and Hayden Belfield. 

In so far as the other avenue of my work, my support of research can be stated quite simply as fostering review of grant applications, and also reviewing interim reports for dispersing funds related to AGI safety grants. And then just touching again on my direct work around our projects, often if you see some project put out by the Future of Life Institute, I usually have at least some involvement with it from a logistics, operations, execution, or ideation standpoint related to it.

And moving into the next line of questioning here for the team, what would you all say motivates your interest in existential risk and the work that you do at FLI? Is there anything in particular that is motivating this work for you?

Ian Rusconi: What motivates my interest in existential risk in general I think is that it’s extraordinarily interdisciplinary. But my interest in what I do at FLI is mostly that I’m really happy to have a hand in producing content that I find compelling. But it isn’t just the subjects and the topics that we cover in these podcasts, it’s how you and Ariel have done so. One of the reasons I have so much respect for the work that you two have done and consequently enjoy working on it so much is the comprehensive approach that you take in your lines of questioning.

You aren’t afraid to get into the weeds with interviewees on very specific technical details, but still seek to clarify jargon and encapsulate explanations, and there’s always an eye towards painting a broader picture so we can contextualize a subject’s placement in a field as a whole. I think that FLI’s podcasts often do a tightrope act, walking the line between popular audience and field specialists in a way that doesn’t treat the former like children, and doesn’t bore the latter with a lack of substance. And that’s a really hard thing to do. And I think it’s a rare opportunity to be able to help create something like this.

Kirsten Gronlund: I guess really broadly, I feel like there’s sort of this sense generally that a lot of these technologies and things that we’re coming up with are going to fix a lot of issues on their own. Like new technology will help us feed more people, and help us end poverty, and I think that that’s not true. We already have the resources to deal with a lot of these problems, and we haven’t been. So I think, really, we need to figure out a way to use what is coming out and the things that we’re inventing to help people. Otherwise we’re going to end up with a lot of new technology making the top 1% way more wealthy, and everyone else potentially worse off.

So I think for me that’s really what it is, is to try to communicate to people that these technologies are not, on their own, the solution, and we need to all work together to figure out how to implement them, and how to restructure things in society more generally so that we can use these really amazing tools to make the world better.

Lucas Perry: Yeah. I’m just thinking about how technology enables abundance and how it seems like there are not limits to human greed, and there are limits to human greed. Human greed can potentially want infinite power, but also there’s radically diminishing returns on one’s own happiness and wellbeing as one gains more access to more abundance. It seems like there’s kind of a duality there. 

Kirsten Gronlund: I agree. I mean, I think that’s a very effective altruist way to look at it. That those same resources, if everyone has some power and some money, people will on average be happier than if you have all of it and everyone else has less. But I feel like people, at least people who are in the position to accumulate way more money than they could ever use, tend to not think of it that way, which is unfortunate.

Tucker Davey: In general with working with FLI, I think I’m motivated by some mix of fear and hope. And I would say the general fear is that, if we as a species don’t figure out how to cooperate on advanced technology, and if we don’t agree to avoid certain dangerous paths, we’ll inevitably find some way to destroy ourselves, whether it’s through AI or nuclear weapons or synthetic biology. But then that’s also balanced by a hope that there’s so much potential for large scale cooperation to achieve our goals on these issues, and so many more people are working on these topics as opposed to five years ago. And I think there really is a lot of consensus on some broad shared goals. So I have a hope that through cooperation and better coordination we can better tackle some of these really big issues.

Emilia Javorsky: Part of the reason as a physician I went into the research side of it is this idea of wanting to help people at scale. I really love the idea of how do we use science and translational medicine, not just to help one person, but to help whole populations of people. And so for me, this issue of lethal autonomous weapons is the converse of that. This is something that really has the capacity to both destroy lives at scale in the near term, and also as we think towards questions like value alignment and longer term, more existential questions, it’s something that for me is just very motivating. 

Jared Brown: This is going to sound a little cheesy and maybe even a little selfish, but my main motivation is my kids. I know that they have a long life ahead of them, hopefully, and there’s various different versions of the future that’ll better or worse for them. And I know that emerging technology policy is going to be key to maximizing the benefit of their future and everybody else’s, and that’s ultimately what motivates me. I’ve been thinking about tech policy basically ever since I started researching and reading Futurism books when my daughter was born about eight years ago, and that’s what really got me into the field and motivated to work on it full-time.

Meia Chita-Tegmark: I like to think of my work as being ultimately about people. I think that one of the most interesting aspects of this human drama is our relationship with technology, which recently has become evermore promising and also evermore dangerous. So, I want to study that, and I feel crazy lucky that there are universities willing to pay me to do it. And also to the best of my abilities, I want to try to nudge people in the technologies that they develop in more positive directions. I’d like to see a world where technology is used to save lives and not to take lives. I’d like to see technologies that are used for nurture and care rather than power and manipulation. 

Jessica Cussins Newman: I think the integration of machine intelligence into the world around us is one of the most impactful changes that we’ll experience in our lifetimes. I’m really excited about the beneficial uses of AI, but I worry about its impacts, and the questions of not just what we can build, but what we should build. And how we could see these technologies being destabilizing, or that won’t be sufficiently thoughtful about ensuring that the systems aren’t developed or used in ways that expose us to new vulnerabilities, or impose undue burdens on particular communities.

Anthony Aguirre: I would say it’s kind of a combination of things. Everybody looks at the world and sees that there are all kinds of problems and issues and negative directions that lots of things are going, and it feels frustrating and depressing. And I feel that given that I’ve got a particular day job that’ll affords me a lot of freedom, given that I have this position at Future of Life Institute, that there are a lot of talented people around who I’m able to work with, there’s a huge opportunity, and a rare opportunity to actually do something.

Who knows how effective it’ll actually be in the end, but to try to do something and to take advantage of the freedom, and standing, and relationships, and capabilities that I have available. I kind of see that as a duty in a sense, that if you find in a place where you have a certain set of capabilities, and resources, and flexibility, and safety, you kind of have a duty to make use of that for something beneficial. I sort of feel that, and so try to do so, but I also feel like it’s just super interesting, thinking about the ways that you can create things that can be effective, it’s just a fun intellectual challenge. 

There are certainly aspects of what I do at Future of Life Institute that are sort of, “Oh, yeah, this is important so I should do it, but I don’t really feel like it.” Those are occasionally there, but mostly it feels like, “Ooh, this is really interesting and exciting, I want to get this done and see what happens.” So in that sense it’s really gratifying in both ways, to feel like it’s both potentially important and positive, but also really fun and interesting.

Max Tegmark: What really motivates me is this optimistic realization that after 13.8 billion years of cosmic history, we have reached this fork in the road where we have these conscious entities on this little spinning ball in space here who, for the first time ever, have the future in their own hands. In the stone age, who cared what you did? Life was going to be more or less the same 200 years later regardless, right? Whereas now, we can either develop super powerful technology and use it to destroy life on earth completely, go extinct and so on. Or, we can create a future where, with the help of artificial intelligence amplifying our intelligence, we can help life flourish like never before. And I’m not talking just about the next election cycle, I’m talking about for billions of years. And not just here, but throughout much of our amazing universe. So I feel actually that we have a huge responsibility, and a very exciting one, to make sure we don’t squander this opportunity, don’t blow it. That’s what lights me on fire.

Lucas Perry: So I’m deeply motivated by the possibilities of the deep future. I often take cosmological or macroscopic perspectives when thinking about my current condition or the condition of life on earth. The universe is about 13.8 billion years old and our short lives of only a few decades are couched within the context of this ancient evolving system of which we are a part. As far as we know, consciousness has only really exploded and come onto the scene in the past few hundred million years, at least in our sector of space and time, and the fate of the universe is uncertain but it seems safe to say that we have at least billions upon billions of years left before the universe perishes in some way. That means there’s likely longer than the current lifetime of the universe for earth originating intelligent life to do and experience amazing and beautiful things beyond what we can even know or conceive of today.

It seems very likely to me that the peaks and depths of human consciousness, from the worst human misery to the greatest of joy, peace, euphoria, and love, represent only a very small portion of a much larger and higher dimensional space of possible conscious experiences. So given this, I’m deeply moved by the possibility of artificial intelligence being the next stage in the evolution of life and the capacities for that intelligence to solve existential risk, for that intelligence to explore the space of consciousness and optimize the world, for super-intelligent and astronomical degrees of the most meaningful and profound states of consciousness possible. So sometimes I ask myself, what’s a universe good for if not ever evolving into higher and more profound and intelligent states of conscious wellbeing? I’m not sure, and this is still an open question for sure, but this deeply motivates me as I feel that the future can be unimaginably good to degrees and kinds of wellbeing that we can’t even conceive of today. There’s a lot of capacity there for the future to be something that is really, really, really worth getting excited and motivated about.

And moving along in terms of questioning again here, this question is again for the whole team: do you have anything more specifically that you hope results from your work, or is born of your work at FLI?

Jared Brown: So, I have two primary objectives, the first is sort of minor but significant. A lot of what I do on a day-to-day basis is advocate for relatively minor changes to existing and future near term policy on emerging technology. And some of these changes won’t make a world of difference unto themselves, but the small marginal benefits to the future can cumulate rather significantly overtime. So, I look for as many small wins as possible in different policy-making environments, and try and achieve those on a regular basis.

And then more holistically in the long-run, I really want to help destigmatize the discussion around global catastrophic and existential risk, and Traditional National Security, and International Security policy-making. It’s still quite an obscure and weird thing to say to people, I work on global catastrophic and existential risk, and it really shouldn’t be. I should be able talk to most policy-makers in security related fields, and have it not come off as a weird or odd thing to be working on. Because inherently what we’re talking about is the very worst of what could happen to you or humanity or even life as we know it on this planet. And there should be more people who work on these issues both from an effective altruistic perspective and other perspectives going forward.

Jessica Cussins Newman: I want to raise awareness about the impacts of AI and the kinds of levers that we have available to us today to help shape these trajectories. So from designing more robust machine learning models, to establishing the institutional procedures or processes that can track and monitor those design decisions and outcomes and impacts, to developing accountability and governance mechanisms to ensure that those AI systems are contributing to a better future. We’ve built a tool that can automate decision making, but we need to retain human control and decide collectively as a society where and how to implement these new abilities.

Max Tegmark: I feel that there’s a huge disconnect right now between our potential, as the human species, and the direction we’re actually heading in. We are spending most of our discussions in news media on total BS. You know, like country A and country B are squabbling about something which is quite minor, in the grand scheme of things, and people are often treating each other very badly in the misunderstanding that they’re in some kind of zero-sum game, where one person can only get better off if someone else gets worse off. Technology is not a zero-sum game. Everybody wins at the same time, ultimately, if you do it right. 

Why are we so much better off now than 50,000 years ago or 300 years ago? It’s because we have antibiotics so we don’t die of stupid diseases all the time. It’s because we have the means to produce food and keep ourselves warm, and so on, with technology, and this is nothing compared to what AI can do.

I’m very much hoping that this mindset that we all lose together or win together is something that can catch on a bit more as people gradually realize the power of this tech. It’s not the case that either China is going to win and the U.S. is going to lose, or vice versa. What’s going to happen is either we’re both going to lose because there’s going to be some horrible conflict and it’s going to ruin things for everybody, or we’re going to have a future where people in China are much better off, and people in the U.S. and elsewhere in the world are also much better off, and everybody feels that they won. There really is no third outcome that’s particularly likely.

Lucas Perry: So, in the short term, I’m hoping that all of the projects we’re engaging with help to nudge the trajectory of life on earth in a positive direction. I’m hopeful that we can mitigate an arms race in lethal autonomous weapons. I see that as being a crucial first step in coordination around AI issues such that, if that fails, it may likely be much harder to coordinate in the future on making sure that beneficial AI takes place. I am also hopeful that we can promote beneficial AI alignment and AI safety research farther and mainstream its objectives and understandings about the risks posed by AI and what it means to create beneficial AI. I’m hoping that we can maximize the wisdom with which we handle technology through projects and outreach, which explicitly cultivate ethics and coordination and governance in ways which help to direct and develop technologies in ways that are beneficial.

I’m also hoping that we can promote and instantiate a culture and interest in existential risk issues and the technical, political, and philosophical problems associated with powerful emerging technologies like AI. It would be wonderful if the conversations that we have on the podcast and at FLI and in the surrounding community weren’t just something for us. These are issues that are deeply interesting and will ever become more important as technology becomes more powerful. And so I’m really hoping that one day discussions about existential risk and all the kinds of conversations that we have on the podcast are much more mainstream, are normal, that there are serious institutions in government and society which explore these, is part of common discourse as a society and civilization.

Emilia Javorsky: In an ideal world, all of FLI’s work in this area, a great outcome would be the realization of the Asilomar principle that an arms race in lethal autonomous weapons must be avoided. I hope that we do get there in the shorter term. I think the activities that we’re doing now on increasing awareness around this issue, better understanding and characterizing the unique risks that these systems pose across the board from a national security perspective, a human rights perspective, and an AI governance perspective, are a really big win in my book.

Meia Chita-Tegmark: When I allow myself to unreservedly daydream about how I want my work to manifest itself into the world, I always conjure up fantasy utopias in which people are cared for and are truly inspired. For example, that’s why I am very committed to fighting against the development of lethal autonomous weapons. It’s precisely because a world with such technologies would be one in which human lives would be cheap, killing would be anonymous, our moral compass would likely be very damaged by this. I want to start work on using technology to help people, maybe to heal people. In my research, I tried to think of various disabilities and how technology can help with those, but that is just one tiny aspect of a wealth of possibilities for using technology, and in particular, AI for good.

Anthony Aguirre: I’ll be quite gratified if I can find that some results of some of the things that I’ve done help society be better and more ready, and to wisely deal with challenges that are unfolding. There are a huge number of problems in society, but there are a particular subset that are just sort of exponentially growing problems, because they have to do with exponentially advancing technology. And the set of people who are actually thinking proactively of the problems that those technologies are going to create, rather than just creating the technologies or sort of dealing with the problems when they arise, it’s quite small.

FLI is a pretty significant part of that tiny community of people who are thinking about that. But I also think it’s very important. Problems are better solved in advance, if possible. So I think anything that we can do to nudge things in the right direction, taking the relatively high point of leverage I think the Future of Life Institute has, will feel useful and worthwhile. Any of these projects being successful, I think will have a significant positive impact, and it’s just a question of buckling down and trying to get them to work.

Kirsten Gronlund: A big part of this field, not necessarily, but sort of just historically has been that it’s very male, and it’s very white, and in and of itself is a pretty privileged group of people, and something that I personally care about a lot is to try to expand some of these conversations around the future, and what we want it to look like, and how we’re going to get there, and involve more people and more diverse voices, more perspectives.

It goes along with what I was saying, that if we don’t figure out how to use these technologies in better ways, we’re just going to be contributing to people who have historically been benefiting from technology, and so I think bringing some of the people who have historically not been benefiting from technology and the way that our society is structured into these conversations, can help us figure out how to make things better. I’ve definitely been trying, while we’re doing this book guide thing, to make sure that there’s a good balance of male and female authors, people of color, et cetera and same with our podcast guests and things like that. But yeah, I mean I think there’s a lot more to be done, definitely, in that area.

Tucker Davey: So with the projects related to FLI’s AI communication strategy, I am hopeful that as an overall community, as an AI safety community, as an effective altruism community, existential risk community, we’ll be able to better understand what our core beliefs are about risks from advanced AI, and better understand how to communicate to different audiences, whether these are policymakers that we need to convince that AI is a problem worth considering, or whether it’s just the general public, or shareholders, or investors. Different audiences have different ideas of AI, and if we as a community want to be more effective at getting them to care about this issue and understand that it’s a big risk, we need to figure out better ways to communicate with them. And I’m hoping that a lot of this communications work will help the community as a whole, not just FLI, communicate with these different parties and help them understand the risks.

Ian Rusconi: Well, I can say that I’ve learned more since I started working on these podcasts about more disparate subjects than I had any idea about. Take lethal autonomous weapon systems, for example, I didn’t know anything about that subject when I started. These podcasts are extremely educational, but they’re conversational, and that makes them accessible, and I love that. And I hope that as our audience increases, other people find the same thing and keep coming back because we learn something new every time. I think that through podcasts, like the ones that we put out at FLI, we are enabling that sort of educational enrichment.

Lucas Perry: Cool. I feel the same way. So, you actually have listened to more FLI podcasts than perhaps anyone, since you’ve listened to all of them. Of all of these podcasts, do you have any specific projects, or a series that you have found particularly valuable? Any favorite podcasts, if you could mention a few, or whatever you found most valuable?

Ian Rusconi: Yeah, a couple of things. First, back in February, Ariel and Max Tegmark did a two part conversation with Matthew Meselson in advance of FLI awarding him in April, and I think that was probably the most fascinating and wide ranging single conversation I’ve ever heard. Philosophy, science history, weapons development, geopolitics, the value of the humanities from a scientific standpoint, artificial intelligence, treaty development. It was just such an incredible amount of lived experience and informed perspective in that conversation. And, in general, when people ask me what kinds of things we cover on the FLI podcast, I point them to that episode.

Second, I’m really proud of the work that we did on Not Cool, A Climate Podcast. The amount of coordination and research Ariel and Kirsten put in to make that project happen was staggering. I think my favorite episodes from there were those dealing with the social ramifications of climate change, specifically human migration. It’s not my favorite topic to think about, for sure, but I think it’s something that we all desperately need to be aware of. I’m oversimplifying things here, but Kris Ebi’s explanations of how crop failure and malnutrition and vector borne diseases can lead to migration, Cullen Hendrix touching on migration as it relates to the social changes and conflicts born of climate change, Lindsay Getschel’s discussion of climate change as a threat multiplier and the national security implications of migration.

Migration is happening all the time and it’s something that we keep proving we’re terrible at dealing with, and climate change is going to increase migration, period. And we need to figure out how to make it work and we need to do it in a way that ameliorates living standards and prevents this extreme concentrated suffering. And there are questions about how to do this while preserving cultural identity, and the social systems that we have put in place, and I know none of these are easy. But if instead we’d just take the question of, how do we reduce suffering? Well, we know how to do that and it’s not complicated per se: have compassion and act on it. We need compassionate government and governance. And that’s a thing that came up a few times, sometimes directly and sometimes obliquely, in Not Cool. The more I think about how to solve problems like these, the more I think the intelligent answer is compassion.

Lucas Perry: So, do you feel like you just learned a ton about climate change from the Not Cool podcast that you just had no idea about?

Ian Rusconi: Yeah, definitely. And that’s really something that I can say about all of FLI’s podcast series in general, is that there are so many subtopics on the things that we talk about that I always learn something new every time I’m putting together one of these episodes. 

Some of the actually most thought provoking podcasts to me are the ones about the nature of intelligence and cognition, and what it means to experience something, and how we make decisions. Two of the AI Alignment Podcast episodes from this year stand out to me in particular. First was the one with Josh Green in February, which did an excellent job of explaining the signal grounding problem and grounded cognition in an understandable and engaging way. And I’m also really interested in his lab’s work using the veil of ignorance. And second was the episode with Mike Johnson and Andres Gomez Emilsson of the Qualia Research Institute in May, where I particularly liked the discussion of electromagnetic harmony in the brain, and the interaction between the consonance and dissonance of it’s waves, and how you can basically think of music as a means by which we can hack our brains. Again, it gets back to the fabulously, extraordinarily interdisciplinary aspect of everything that we talk about here.

Lucas Perry: Kirsten, you’ve also been integral to the podcast process. What are your favorite things that you’ve done at FLI in 2019, and are there any podcasts in particular that stand out for you?

Kirsten Gronlund: The Women For The Future campaign was definitely one of my favorite things, which was basically just trying to highlight the work of women involved in existential risk, and through that try to get more women feeling like this is something that they can do and to introduce them to the field a little bit. And then also the Not Cool Podcast that Ariel and I did. I know climate isn’t the major focus of FLI, but it is such an important issue right now, and it was really just interesting for me because I was much more closely involved with picking the guests and stuff than I have been with some of the other podcasts. So it was just cool to learn about various people and their research and what’s going to happen to us if we don’t fix the climate. 

Lucas Perry: What were some of the most interesting things that you learned from the Not Cool podcast? 

Kirsten Gronlund: Geoengineering was really crazy. I didn’t really know at all what geoengineering was before working on this podcast, and I think it was Alan Robock in his interview who was saying even just for people to learn about the fact that one of the solutions that people are considering to climate change right now being shooting a ton of crap into the atmosphere and basically creating a semi nuclear winter, would hopefully be enough to kind of freak people out into being like, “maybe we should try to fix this a different way.” So that was really crazy.

I also thought it was interesting just learning about some of the effects of climate change that you wouldn’t necessarily think of right away. The fact that they’ve shown the links between increased temperature and upheaval in government, and they’ve shown links between increased temperature and generally bad mood, poor sleep, things like that. The quality of our crops is going to get worse, so we’re going to be eating less nutritious food.

Then some of the cool things, I guess this ties in as well with artificial intelligence, is some of the ways that people are using some of these technologies like AI and machine learning to try to come up with solutions. I thought that was really cool to learn about, because that’s kind of like what I was saying earlier where if we can figure out how to use these technologies in productive ways. They are such powerful tools and can do so much good for us. So it was cool to see that in action in the ways that people are implementing automated systems and machine learning to reduce emissions and help out with the climate.

Lucas Perry: From my end, I’m probably most proud of our large conference, Beneficial AGI 2019, we did to further mainstream AGI safety thinking and research and then the resulting projects which were a result of conversations which took place there were also very exciting and encouraging. I’m also very happy about the growth and development of our podcast series. This year, we’ve had over 200,000 listens to our podcasts. So I’m optimistic about the continued growth and development of our outreach through this medium and our capacity to inform people about these crucial issues.

Everyone else, other than podcasts, what are some of your favorite things that you’ve done at FLI in 2019?

Tucker Davey: I would have to say the conferences. So the beneficial AGI conference was an amazing start to the year. We gathered such a great crowd in Puerto Rico, people from the machine learning side, from governance, from ethics, from psychology, and really getting a great group together to talk out some really big questions, specifically about the long-term future of AI, because there’s so many conferences nowadays about the near term impacts of AI, and very few are specifically dedicated to thinking about the long term. So it was really great to get a group together to talk about those questions and that set off a lot of good thinking for me personally. That was an excellent conference. 

And then a few months later, Anthony and a few others organized a conference called the Augmented Intelligence Summit, and that was another great collection of people from many different disciplines, basically thinking about a hopeful future with AI and trying to do world building exercises to figure out what that ideal world with AI would look like. These conferences and these events in these summits do a great job of bringing together people from different disciplines in different schools of thought to really tackle these hard questions, and everyone who attends them is really dedicated and motivated, so seeing all those faces is really inspiring.

Jessica Cussins Newman: I’ve really enjoyed the policy engagement that we’ve been able to have this year. You know, looking back to last year, we did see a lot of successes around the development of ethical principles for AI, and I think this past year, there’s been significant interest in actually implementing those principles into practice. So seeing many different governance forums, both within the U.S. and around the world, look to that next level, and so I think one of my favorite things has just been seeing FLI become a trusted resource for so many of those governance and policies processes that I think will significantly shape the future of AI.

I think the thing that I continue to value significantly about FLI is its ability as an organization to just bring together an amazing network of AI researchers and scientists, and to be able to hold events, and networking and outreach activities, that can merge those communities with other people thinking about issues around governance or around ethics or other kinds of sectors and disciplines. We have been playing a key role in translating some of the technical challenges related to AI safety and security into academic and policy spheres. And so that continues to be one of my favorite things that FLI is really uniquely good at.

Jared Brown: A recent example here, Future of Life Institute submitted some comments on a regulation that the Department of Housing and Urban Development put out in the U.S. And essentially the regulation is quite complicated, but they were seeking comment about how to integrate artificial intelligence systems into the legal liability framework surrounding something called ‘the Fair Housing Act,’ which is an old, very important civil rights legislation and protection to prevent discrimination in the housing market. And their proposal was essentially to grant users, such as a mortgage lender, or the banking system seeking loans, or even a landlord, if they were to use an algorithm to decide who they rent out a place to, or who to give a loan, that met certain technical standards, they’d be given liability protection. And this stems from the growing use of AI in the housing market. 

Now, in theory, there’s nothing wrong with using algorithmic systems so long as they’re not biased, and they’re accurate, and well thought out. However, if you grant it like HUD wanted to, blanket liability protection, you’re essentially telling that bank officer or that landlord that they should only exclusively use those AI systems that have the liability protection. And if they see a problem in those AI systems, and they’ve got somebody sitting across from them, and think this person really should get a loan, or this person should be able to rent my apartment because I think they’re trustworthy, but the AI algorithm says “no,” they’re not going to dispute what the AI algorithm tells them too, because to do that, they take on liability of their own, and could potentially get sued. So, there’s a real danger here in moving too quickly in terms of how much legal protection we give these systems. And so, the Future of Life Institute, as well as many other different groups, commented on this proposal and pointed out these flaws to the Department of Housing and Urban Development. That’s an example of just one of many different things that the Future of Life has done, and you can actually go online and see our public comments for yourself, if you want to.

Lucas Perry:Wonderful.

Jared Brown: Honestly, a lot of my favorite things are just these off the record type conversations that I have in countless formal and informal settings with different policymakers and people who influence policy. The policy-making world is an old-fashioned, face-to-face type business, and essentially you really have to be there, and to meet these people, and to have these conversations to really develop a level of trust, and a willingness to engage with them in order to be most effective. And thankfully I’ve had a huge range of those conversations throughout the year, especially on AI. And I’ve been really excited to see how well received Future of Life has been as an institution. Our reputation precedes us because of a lot of the great work we’ve done in the past with the Asilomar AI principles, and the AI safety grants. It’s really helped me get in the room for a lot of these conversations, and given us a lot of credibility as we discuss near-term AI policy.

In terms of bigger public projects, I also really enjoyed coordinating with some community partners across the space in our advocacy on the U.S. National Institute of Standards and Technology’s plan for engaging in the development of technical standards on AI. In the policy realm, it’s really hard to see some of the end benefit of your work, because you’re doing advocacy work, and it’s hard to get folks to really tell you why the certain changes were made, and if you were able to persuade them. But in this circumstance, I happen to know for a fact that we had real positive effect on the end products that they developed. I talked to the lead authors about it, and others, and can see the evidence in the final product of the effect of our changes.

In addition to our policy and advocacy work, I really, really like that FLI continues to interface with the AI technical expert community on a regular basis. And this isn’t just through our major conferences, but also informally throughout the entire year, through various different channels and personal relationships that we’ve developed. It’s really critical for anyone’s policy work to be grounded in the technical expertise on the topic that they’re covering. And I’ve been thankful for the number of opportunities I’ve been given throughout the year to really touch base with some of the leading minds in AI about what might work best, and what might not work best from a policy perspective, to help inform our own advocacy and thinking on various different issues.

I also really enjoy the educational and outreach work that FLI is doing. As with our advocacy work, it’s sometimes very difficult to see the end benefit of the work that we do with our podcasts, and our website, and our newsletter. But I know anecdotally, from various different people, that they are listened too, that they are read by leading policymakers and researchers in this space. And so, they have a real effect on developing a common understanding in the community and helping network and develop collaboration on some key topics that are of interest to the Future of Life and people like us.

Emilia Javorsky: 2019 was a great year at FLI. It’s my first year at FLI, so I’m really excited to be part of such an incredible team. There are two real highlights that come to mind. One was publishing an article in the British Medical Journal on this topic of engaging the medical community in the lethal autonomous weapons debate. In previous disarmament conversations, it’s always been a community that has played an instrumental role in getting global action on these issues passed, whether you look at nuclear, landmines, biorisk… So that was something that I thought was a great contribution, because up until now, they hadn’t really been engaged in the discussion.

The other that comes to mind that was really amazing was a workshop that we hosted, where we brought together AI researchers, and roboticists, and lethal autonomous weapons experts, with very divergent range of views of the topic, to see if they could achieve consensus on something. Anything. We weren’t really optimistic to say what that could be going into it, and the result of that was actually remarkably heartening. They came up with a roadmap that outlined four components for action on lethal autonomous weapons, including things like the potential role that a moratorium may play, research areas that need exploration, non-proliferation strategies, ways to avoid unintentional escalation. They actually published this in the IEEE Spectrum, which I really recommend reading, but it was just really exciting to see just how much area of agreement and consensus that can exist in people that you would normally think have very divergent views on the topic.

Max Tegmark: To make it maximally easy for them to get along, we actually did this workshop in our house, and we had lots of wine. And because they were in our house, also it was a bit easier to exert social pressure on them to make sure they were nice to each other, and have a constructive discussion. The task we gave them was simply: write down anything that they all agreed on that should be done to reduce the risk of terrorism or destabilizing events from this tech. And you might’ve expected a priori that they would come up with a blank piece of paper, because some of these people had been arguing very publicly that we need lethal autonomous weapons, and others had been arguing very vociferously that we should ban them. Instead, it was just so touching to see that when they actually met each other, often for the first time, they could actually listen directly to each other, rather than seeing weird quotes in the news about each other. 

Meia Chita-Tegmark: If I had to pick one thing, especially in terms of emotional intensity, it’s really been a while since I’ve been on such an emotional roller coaster as the one during the workshop related to lethal autonomous weapons. It was so inspirational to see how people that come with such diverging opinions could actually put their minds together, and work towards finding consensus. For me, that was such a hope inducing experience. It was a thrill.

Max Tegmark: They built a real camaraderie and respect for each other, and they wrote this report with five different sets of recommendations in different areas, including a moratorium on these things and all sorts of measures to reduce proliferation, and terrorism, and so on, and that made me feel more hopeful.

We got off to a great start I feel with our January 2019 Puerto Rico conference. This was the third one in a series where we brought together world leading AI researchers from academia, and industry, and other thinkers, to talk not about how to make AI more powerful, but how to make it beneficial. And what I was particularly excited about was that this was the first time when we also had a lot of people from China. So it wasn’t just this little western club, it felt much more global. It was very heartening to meet to see how well everybody got along and shared visions people really, really had. And I hope that if people who are actually building this stuff can all get along, can help spread this kind of constructive collaboration to the politicians and the political leaders in their various countries, we’ll all be much better off.

Anthony Aguirre: That felt really worthwhile in multiple aspects. One, just it was a great meeting getting together with this small, but really passionately positive, and smart, and well-intentioned, and friendly community. It’s so nice to get together with all those people, it’s very inspiring. But also, that out of that meeting came a whole bunch of ideas for very interesting and important projects. And so some of the things that I’ve been working on are projects that came out of that meeting, and there’s a whole long list of other projects that came out of that meeting, some of which some people are doing, some of which are just sitting, gathering dust, because there aren’t enough people to do them. That feels like really good news. It’s amazing when you get a group of smart people together to think in a way that hasn’t really been widely done before. Like, “Here’s the world 20 or 30 or 50 or 100 years from now, what are the things that we’re going to want to have happened in order for the world to be good then?”

Not many people sit around thinking that way very often. So to get 50 or 100 people who are really talented together thinking about that, it’s amazing how easy it is to come up with a set of really compelling things to do. Now actually getting those done, getting the people and the money and the time and the organization to get those done is a whole different thing. But that was really cool to see, because you can easily imagine things that have a big influence 10 or 15 years from now that were born right at that meeting.

Lucas Perry: Okay, so that hits on BAGI. So, were there any other policy-related things that you’ve done at FLI in 2019 that you’re really excited about?

Anthony Aguirre: It’s been really good to see, both at FLI and globally, the new and very serious attention being paid to AI policy and technology policy in general. We created the Asilomar principles back in 2017, and now two years later, there are multiple other sets of principles, many of which are overlapping and some of which aren’t. And more importantly, now institutions coming into being, international groups like the OECD, like the United Nations, the European Union, maybe someday the US government, actually taking seriously these sets of principles about how AI should be developed and deployed, so as to be beneficial.

There’s kind of now too much going on to keep track of, multiple bodies, conferences practically every week, so the FLI policy team has been kept busy just keeping track of what’s going on, and working hard to positively influence all these efforts that are going on. Because of course while there’s a lot going on, it doesn’t necessarily mean that there’s a huge amount of expertise that is available to feed those efforts. AI is relatively new on the world’s stage, at least at the size that it’s assuming. AI and policy expertise, that intersection, there just aren’t a huge number of people who are ready to give useful advice on the policy side and the technical side and what the ramifications are and so on.

So I think the fact that FLI has been there from the early days of AI policy five years ago, means that we have a lot to offer to these various efforts that are going on. I feel like we’ve been able to really positively contribute here and there, taking opportunistic chances to lend our help and our expertise to all kinds of efforts that are going on and doing real serious policy work. So that’s been really interesting to see that unfold and how rapidly these various efforts are gearing up around the world. I think that’s something that FLI can really do, bringing the technical expertise to make those discussions and arguments more sophisticated, so that we can really take it to the next step and try to get something done.

Max Tegmark: Another one which was very uplifting is this tradition we have to celebrate unsung heroes. So three years ago we celebrated the guy who prevented the world from getting nuked in 1962, Vasili Arkhipov. Two years ago, we celebrated the man who probably helped us avoid getting nuked in 1983, Stanislav Petrov. And this year we celebrated an American who I think has done more than anyone else to prevent all sorts of horrible things happening with bioweapons, Matthew Meselson from Harvard, who ultimately persuaded Kissinger, who persuaded Brezhnev and everyone else that we should just ban them. 

We celebrated them all by giving them or their survivors a $50,000 award and having a ceremony where we honored them, to remind the world of how valuable it is when you can just draw a clear, moral line between the right thing to do and the wrong thing to do. Even though we call this the Future of Life award officially, informally, I like to think of this as our unsung hero award, because there really aren’t awards particularly for people who prevented shit from happening. Almost all awards are for someone causing something to happen. Yet, obviously we wouldn’t be having this conversation if there’d been a global thermonuclear war. And it’s so easy to think that just because something didn’t happen, there’s not much to think about it. I’m hoping this can help create both a greater appreciation of how vulnerable we are as a species and the value of not being too sloppy. And also, that it can help foster a tradition that if someone does something that future generations really value, we actually celebrate them and reward them. I want us to have a norm in the world where people know that if they sacrifice themselves by doing something courageous, that future generations will really value, then they will actually get appreciation. And if they’re dead, their loved ones will get appreciation.

We now feel incredibly grateful that our world isn’t radioactive rubble, or that we don’t have to read about bioterrorism attacks in the news every day. And we should show our gratitude, because this sends a signal to people today who can prevent tomorrow’s catastrophes. And the reason I think of this as an unsung hero award, and the reason these people have been unsung heroes, is because what they did was often going a little bit against what they were supposed to do at the time, according to the little system they were in, right? Arkhipov and Petrov, neither of them got any medals for averting nuclear war because their peers either were a little bit pissed at them for violating protocol, or a little bit embarrassed that we’d almost had a war by mistake. And we want to send the signal to the kids out there today that, if push comes to shove, you got to go with your own moral principles.

Lucas Perry: Beautiful. What project directions are you most excited about moving in, in 2020 and beyond?

Anthony Aguirre: Along with the ones that I’ve already mentioned, something I’ve been involved with is Metaculus, this prediction platform, and the idea there is there are certain facts about the future world, and Metaculus is a way to predict probabilities for those facts being true about the future world. But they’re also facts about the current world, that we either don’t know whether they’re true or not or we disagree about whether they’re true or not. Something I’ve been thinking a lot about is how to extend the predictions of Metaculus into a general truth-seeking mechanism. If there’s something that’s contentious now, and people disagree about something that should be sort of a fact, can we come up with a reliable truth-seeking arbiter that people will believe, because it’s been right in the past, and it has very clear reliable track record for getting things right, in the same way that Metaculus has that record for getting predictions right?

So that’s something that interests me a lot, is kind of expanding that very strict level of accountability and track record creation from prediction to just truth-seeking. And I think that could be really valuable, because we’re entering this phase where people feel like they don’t know what’s true and facts are under contention. People simply don’t know what to believe. The institutions that they’re used to trusting to give them reliable information are either conflicting with each other or getting drowned in a sea of misinformation.

Lucas Perry: So, would this institution gain its credibility and epistemic status and respectability by taking positions on unresolved, yet concrete issues, which are likely to resolve in the short-term?

Anthony Aguirre: Or the not as short-term. But yeah, so just like in a prediction, where there might be disagreements as to what’s going to happen because nobody quite knows, and then at some point something happens and we all agree, “Oh, that happened, and some people were right and some people were wrong,” I think there are many propositions under contention now, but in a few years when the dust has settled and there’s not so much heat about them, everybody’s going to more or less agree on what the truth was.

And so I think, in a sense, this is about saying, “Here’s something that’s contentious now, let’s make a prediction about how that will turn out to be seen five or 10 or 15 years from now, when the dust has settled people more or less agree on how this was.”

I think there’s only so long that people can go without feeling like they can actually rely on some source of information. I mean, I do think that there is a reality out there, and ultimately you have to pay a price if you are not acting in accordance with what is true about that reality. You can’t indefinitely win by just denying the truth of the way that the world is. People seem to do pretty well for awhile, but I maintain my belief that eventually there will be a competitive advantage in understanding the way things actually are, rather than your fantasy of them.

We in the past did have trusted institutions that people generally listened to, and felt like I’m being told that basic truth. Now they weren’t always, and there were lots of problems with those institutions, but we’ve lost something, in that almost nobody trusts anything anymore at some level, and we have to get that back. We will solve this problem, I think, in the sense that we sort of have to. What that solution will look like is unclear, and this is sort of an effort to seek some way to kind of feel our way towards a potential solution to that.

Tucker Davey: I’m definitely excited to continue this work on our AI messaging and generally just continuing the discussion about advanced AI and artificial general intelligence within the FLI team and within the broader community, to get more consensus about what we believe and how we think we should approach these topics with different communities. And I’m also excited to see how our policy team continues to make more splashes across the world, because it’s really been exciting to watch how Jared and Jessica and Anthony have been able to talk with so many diverse shareholders and help them make better decisions about AI.

Jessica Cussins Newman: I’m most excited to see the further development of some of these global AI policy forums in 2020. For example, the OECD is establishing an AI policy observatory, which we’ll see further development on early in next year. And FLI is keen to support this initiative, and I think it may be a really meaningful forum for global coordination and cooperation on some of these key AI global challenges. So I’m really excited to see what they can achieve.

Jared Brown: I’m really looking forward to the opportunity the Future of Life has to lead the implementation of a recommendation related to artificial intelligence from the UN’s High-Level Panel on Digital Cooperation. This is a group that was led by Jack Ma and Melinda Gates, and they produced an extensive report that had many different recommendations on a range of digital or cyber issues, including one specifically on artificial intelligence. And because of our past work, we were invited to be a leader on the effort to implement and further refine the recommendation on artificial intelligence. And we’ll be able to do that with cooperation from the government of France, and Finland, and also with a UN agency called the UN Global Pulse. So I’m really excited about this opportunity to help lead a major project in the global governance arena, and to help actualize how some of these early soft law norms that have developed in AI policy can be developed for a better future.

I’m also excited about continuing to work with other civil society organizations, such as the Future of Humanity Institute, the Center for the Study of Existential Risk, other groups that are like-minded in their approach to tech issues. And helping to inform how we work on AI policy in a number of different governance spaces, including with the European Union, the OECD, and other environments where AI policy has suddenly become the topic du jour of interest to policy-makers.

Emilia Javorsky: Something that I’m really excited about is continuing to work on this issue of global engagement in the topic of lethal autonomous weapons, as I think this issue is heading in a very positive direction. By that I mean starting to move towards meaningful action. And really the only way we get to action on this issue is through education, because policy makers really need to understand what these systems are, what their risks are, and how AI differs from traditional other areas of technology that have really well established existing governance frameworks. So that’s something I’m really excited about for the next year. And this has been especially in the context of engaging with states at the United nations. So it’s really exciting to continue those efforts and continue to keep this issue on the radar.

Kirsten Gronlund: I’m super excited about our website redesign. I think that’s going to enable us to reach a lot more people and communicate more effectively, and obviously it will make my life a lot easier. So I think that’s going to be great.

Lucas Perry: I’m excited about that too. I think there’s a certain amount of a maintenance period that we need to kind of go through now, with regards to the website and a bunch of the pages, so that everything is refreshed and new and structured better. 

Kirsten Gronlund: Yeah, we just need like a little facelift. We are aware that the website right now is not super user friendly, and we are doing an incredibly in depth audit of the site to figure out, based on data, what’s working and what isn’t working, and how people would best be able to use the site to get the most out of the information that we have, because I think we have really great content, but the way that the site is organized is not super conducive to finding it, or using it.

So anyone who likes our site and our content but has trouble navigating or searching or anything: hopefully that will be getting a lot easier.

Ian Rusconi: I think I’d be interested in more conversations about ethics overall, and how ethical decision making is something that we need more of, as opposed to just economic decision making, and reasons for that with actual concrete examples. It’s one of the things that I find is a very common thread throughout almost all of the conversations that we have, but is rarely explicitly connected from one episode to another. And I think that there is some value in creating a conversational narrative about that. If we look at, say, the Not Cool Project, there are episodes about finance, and episodes about how the effects of what we’ve been doing to create global economy have created problems. And if we look at the AI Alignment Podcasts, there are concerns about how systems will work in the future, and who they will work for, and who benefits from things. And if you look at FLI’s main podcast, there are concerns about denuclearization, and lethal autonomous weapons, and things like that, and there are major ethical considerations to be had in all of these.

And I think that there’s benefit in taking all of these ethical considerations, and talking about them specifically outside of the context of the fields that they are in, just as a way of getting more people to think about ethics. Not in opposition to thinking about, say, economics, but just to get people thinking about ethics as a stand-alone thing, before trying to introduce how it’s relevant to something. I think if more people thought about ethics, we would have a lot less problems than we do.

Lucas Perry: Yeah, I would be interested in that too. I would first want to know empirically how much of the decisions that the average human being makes a day are actually informed by “ethical decision making,” which I guess my intuition at the moment is probably not that much?

Ian Rusconi: Yeah, I don’t know how much ethics plays into my autopilot-type decisions. I would assume. Probably not very much.

Lucas Perry: Yeah. We think about ethics explicitly a lot. I think that that definitely shapes my terminal values. But yeah, I don’t know, I feel confused about this. I don’t know how much of my moment to moment lived experience and decision making is directly born of ethical decision making. So I would be interested in that too, with that framing that I would first want to know the kinds of decision making faculties that we have, and how often each one is employed, and the extent to which improving explicit ethical decision making would help in making people more moral in general.

Ian Rusconi: Yeah, I could absolutely get behind that.

Max Tegmark: What I find also to be a concerning trend, and a predictable one, is that just like we had a lot of greenwashing in the corporate sector about environmental and climate issues, where people would pretend to care about the issues just so they didn’t really have to do much, we’re seeing a lot of what I like to call “ethics washing” now in AI, where people say, “Yeah, yeah. Okay, let’s talk about AI ethics now, like an ethics committee, and blah, blah, blah, but let’s not have any rules or regulations, or anything. We can handle this because we’re so ethical.” And interestingly, the very same people who talk the loudest about ethics are often among the ones who are the most dismissive about the bigger risks from human level AI, and beyond. And also the ones who don’t want to talk about malicious use of AI, right? They’ll be like, “Oh yeah, let’s just make sure that robots and AI systems are ethical and do exactly what they’re told,” but they don’t want to discuss what happens when some country, or some army, or some terrorist group has such systems, and tells them to do things that are horrible for other people. That’s an elephant in the room we are looking forward to help draw more attention to, I think, in the coming year. 

And what I also feel is absolutely crucial here is to avoid splintering the planet again, into basically an eastern and a western zone of dominance that just don’t talk to each other. Trade is down between China and the West. China has its great firewall, so they don’t see much of our internet, and we also don’t see much of their internet. It’s becoming harder and harder for students to come here from China because of visas, and there’s sort of a partitioning into two different spheres of influence. And as I said before, this is a technology which could easily make everybody a hundred times better or richer, and so on. You can imagine many futures where countries just really respect each other’s borders, and everybody can flourish. Yet, major political leaders are acting like this is some sort of zero-sum game. 

I feel that this is one of the most important things to help people understand that, no, it’s not like we have a fixed amount of money or resources to divvy up. If we can avoid very disruptive conflicts, we can all have the future of our dreams.

Lucas Perry: Wonderful. I think this is a good place to end on that point. So, what are reasons that you see for existential hope, going into 2020 and beyond?

Jessica Cussins Newman: I have hope for the future because I have seen this trend where it’s no longer a fringe issue to talk about technology ethics and governance. And I think that used to be the case not so long ago. So it’s heartening that so many people and institutions, from engineers all the way up to nation states, are really taking these issues seriously now. I think that momentum is growing, and I think we’ll see engagement from even more people and more countries in the future.

I would just add that it’s a joy to work with FLI, because it’s an incredibly passionate team, and everybody has a million things going on, and still gives their all to this work and these projects. I think what unites us is that we all think these are some of the most important issues of our time, and so it’s really a pleasure to work with such a dedicated team.

Lucas Perry:  Wonderful.

Jared Brown: As many of the listeners will probably realize, governments across the world have really woken up to this thing called artificial intelligence, and what it means for civil society, their governments, and the future really of humanity. And I’ve been surprised, frankly, over the past year, about how many of the new national, and international strategies, the new principles, and so forth are actually quite aware of both the potential benefits but also the real safety risks associated with AI. And frankly, this time this year, last year, I wouldn’t have thought as many principles would have come out, that there’s a lot of positive work in those principles, there’s a lot of serious thought about the future of where this technology is going. And so, on the whole, I think the picture is much better than what most people might expect in terms of the level of high-level thinking that’s going on in policy-making about AI, its benefits, and its risks going forward. And so on that score, I’m quite hopeful that there’s a lot of positive soft norms to work from. And hopefully we can work to implement those ideas and concepts going forward in real policy.

Lucas Perry: Awesome.

Emilia Javorsky: I am optimistic, and it comes from having had a lot of these conversations, specifically this past year, on lethal autonomous weapons, and speaking with people from a range of views and being able to sit down, coming together, having a rational and respectful discussion, and identifying actionable areas of consensus. That has been something that has been very heartening for me, because there is just so much positive potential for humanity waiting on the science and technology shelves of today, nevermind what’s in the pipeline that’s coming up. And I think that despite all of this tribalism and hyperbole that we’re bombarded with in the media every day, there are ways to work together as a society, and as a global community, and just with each other to make sure that we realize all that positive potential, and I think that sometimes gets lost. I’m optimistic that we can make that happen and that we can find a path forward on restoring that kind of rational discourse and working together.

Tucker Davey: I think my main reasons for existential hope in 2020 and beyond are, first of all, seeing how many more people are getting involved in AI safety, in effective altruism, and existential risk mitigation. It’s really great to see the community growing, and I think just by having more people involved, that’s a huge step. As a broader existential hope, I am very interested in thinking about how we can better coordinate to collectively solve a lot of our civilizational problems, and to that end, I’m interested in ways where we can better communicate about our shared goals on certain issues, ways that we can more credibly commit to action on certain things. So these ideas of credible commitment mechanisms, whether that’s using advanced technology like blockchain or whether that’s just smarter ways to get people to commit to certain actions, I think there’s a lot of existential hope for bigger groups in society coming together and collectively coordinating to make systemic change happen.

I see a lot of potential for society to organize mass movements to address some of the biggest risks that we face. For example, I think it was last year, an AI researcher, Toby Walsh, who we’ve worked with, he organized a boycott against a South Korean company that was working to develop these autonomous weapons. And within a day or two, I think, he contacted a bunch of AI researchers and they signed a pledge to boycott this group until they decided to ditch the project. And the boycotts succeeded basically within two days. And I think that’s one good example of the power of boycotts, and the power of coordination and cooperation to address our shared goals. So if we can learn lessons from Toby Walsh’s boycott, as well as from the fossil fuel and nuclear divestment movements, I think we can start to realize some of our potential to push these big industries in more beneficial directions.

So whether it’s the fossil fuel industry, the nuclear weapons industry, or the AI industry, as a collective, we have a lot of power to use stigma to push these companies in better directions. No company or industry wants bad press. And if we get a bunch of researchers together to agree that a company’s doing some sort of bad practice, and then we can credibly say that, “Look, you guys will get bad press if you guys don’t change your strategy,” many of these companies might start to change their strategy. And I think if we can better coordinate and organize certain movements and boycotts to get different companies and industries to change their practices, that’s a huge source of existential hope moving forward.

Lucas Perry: Yeah. I mean, it seems like the point that you’re trying to articulate is that there are particular instances like this thing that happened with Toby Walsh that show you the efficacy of collective action around our issues.

Tucker Davey: Yeah. I think there’s a lot more agreement on certain shared goals such,as we don’t want banks investing in fossil fuels, or we don’t want AI companies developing weapons that can make targeted kill decisions without human intervention. And if we take some of these broad shared goals and then we develop some sort of plan to basically pressure these companies to change their ways or to adopt better safety measures, I think these sorts of collective action can be very effective. And I think as a broader community, especially with more people in the community, we have much more of a possibility to make this happen.

So I think I see a lot of existential hope from these collective movements to push industries in more beneficial directions, because they can really help us, as individuals, feel more of a sense of agency that we can actually do something to address these risks.

Kirsten Gronlund: I feel like there’s actually been a pretty marked difference in the way that people are reacting to… at least things like climate change, and I sort of feel like more generally, there’s sort of more awareness just of the precariousness of humanity, and the fact that our continued existence and success on this planet is not a given, and we have to actually work to make sure that those things happen. Which is scary, and kind of exhausting, but I think is ultimately a really good thing, the fact that people seem to be realizing that this is a moment where we actually have to act and we have to get our shit together. We have to work together and this isn’t about politics, this isn’t about, I mean it shouldn’t be about money. I think people are starting to figure that out, and it feels like that has really become more pronounced as of late. I think especially younger generations, like obviously there’s Greta Thunberg and the youth movement on these issues. It seems like the people who are growing up now are so much more aware of things than I certainly was at that age, and that’s been cool to see, I think. They’re better than we were, and hopefully things in general are getting better.

Lucas Perry: Awesome.

Ian Rusconi: I think it’s often easier for a lot of us to feel hopeless than it is to feel hopeful. Most of the news that we get comes in the form of warnings, or the existing problems, or the latest catastrophe, and it can be hard to find a sense of agency as an individual when talking about huge global issues like lethal autonomous weapons, or climate change, or runaway AI.

People frame little issues that add up to bigger ones as things like death by 1,000 bee stings, or the straw that broke the camel’s back, and things like that, but that concept works both ways. 1,000 individual steps in a positive direction can change things for the better. And working on these podcasts has shown me the number of people taking those steps. People working on AI safety, international weapons bans, climate change mitigation efforts. There are whole fields of work, absolutely critical work, that so many people, I think, probably know nothing about. Certainly that I knew nothing about. And sometimes, knowing that there are people pulling for us, that’s all we need to be hopeful. 

And beyond that, once you know that work exists and that people are doing it, nothing is stopping you from getting informed and helping to make a difference. 

Kirsten Gronlund: I had a conversation with somebody recently who is super interested in these issues, but was feeling like they just didn’t have particularly relevant knowledge or skills. And what I would say is “neither did I when I started working for FLI,” or at least I didn’t know a lot about these specific issues. But really anyone, if you care about these things, you can bring whatever skills you have to the table, because we need all the help we can get. So don’t be intimidated, and get involved.

Ian Rusconi: I guess I think that’s one of my goals for the podcast, is that it inspires people to do better, which I think it does. And that sort of thing gives me hope.

Lucas Perry: That’s great. I feel happy to hear that, in general.

Max Tegmark: Let me first give a more practical reason for hope, and then get a little philosophical. So on the practical side, there are a lot of really good ideas that the AI community is quite unanimous about, in terms of policy and things that need to happen, that basically aren’t happening because policy makers and political leaders don’t get it yet. And I’m optimistic that we can get a lot of that stuff implemented, even though policy makers won’t pay attention now. If we get AI researchers around the world to formulate and articulate really concrete proposals and plans for policies that should be enacted, and they get totally ignored for a while? That’s fine, because eventually some bad stuff is going to happen because people weren’t listening to their advice. And whenever those bad things do happen, then leaders will be forced to listen because people will be going, “Wait, what are you going to do about this?” And if at that point, there are broad international consensus plans worked out by experts about what should be done, that’s when they actually get implemented. So the hopeful message I have to anyone working in AI policy is: don’t despair if you’re being ignored right now, keep doing all the good work and flesh out the solutions, and start building consensus for it among the experts, and there will be a time people will listen to you. 

To just end on a more philosophical note, again, I think it’s really inspiring to think how much impact intelligence has had on life so far. We realize that we’ve already completely transformed our planet with intelligence. If we can use artificial intelligence to amplify our intelligence, it will empower us to solve all the problems that we’re stumped by thus far, including curing all the diseases that kill our near and dear today. And for those so minded, even help life spread into the cosmos. Not even the sky is the limit, and the decisions about how this is going to go are going to be made within the coming decades, so within the lifetime of most people who are listening to this. There’s never been a more exciting moment to think about grand, positive visions for the future. That’s why I’m so honored and excited to get to work with the Future Life Institute.

Anthony Aguirre: Just like disasters, I think big positive changes can arise with relatively little warning and then seem inevitable in retrospect. I really believe that people are actually wanting and yearning for a society and a future that gives them fulfillment and meaning, and that functions and works for people.

There’s a lot of talk in the AI circles about how to define intelligence, and defining intelligence as the ability to achieve one’s goals. And I do kind of believe that for all its faults, humanity is relatively intelligent as a whole. We can be kind of foolish, but I think we’re not totally incompetent at getting what we are yearning for, and what we are yearning for is a kind of just and supportive and beneficial society that we can exist in. Although there are all these ways in which the dynamics of things that we’ve set up are going awry in all kinds of ways, and people’s own self-interest fighting it out with the self-interest of others is making things go terribly wrong, I do nonetheless see lots of people who are putting interesting, passionate effort forward toward making a better society. I don’t know that that’s going to turn out to be the force that prevails, I just hope that it is, and I think it’s not time to despair.

There’s a little bit of a selection effect in the people that you encounter through something like the Future of Life Institute, but there are a lot of people out there who genuinely are trying to work toward a vision of some better future, and that’s inspiring to see. It’s easy to focus on the differences in goals, because it seems like different factions that people want totally different things. But I think that belies the fact that there are lots of commonalities that we just kind of take for granted, and accept, and brush under the rug. Putting more focus on those and focusing the effort on, “given that we can all agree that we want these things and let’s have an actual discussion about what is the best way to get those things,” that’s something that there’s sort of an answer to, in the sense that we might disagree on what our preferences are, but once we have the set of preferences we agree on, there’s kind of the correct or more correct set of answers to how to get those preferences satisfied. We actually are probably getting better, we can get better, this is an intellectual problem in some sense and a technical problem that we can solve. There’s plenty of room for progress that we can all get behind.

Again, strong selection effect. But when I think about the people that I interact with regularly through the Future of Life Institute and other organizations that I work as a part of, they’re almost universally highly-effective, intelligent, careful-thinking, well-informed, helpful, easy to get along with, cooperative people. And it’s not impossible to create or imagine a society where that’s just a lot more widespread, right? It’s really enjoyable. There’s no reason that the world can’t be more or less dominated by such people.

As economic opportunity grows and education grows and everything, there’s no reason to see that that can’t grow also, in the same way that non-violence has grown. It used to be a part of everyday life for pretty much everybody, now many people I know go through many years without having any violence perpetrated on them or vice versa. We still live in a sort of overall, somewhat violent society, but nothing like what it used to be. And that’s largely because of the creation of wealth and institutions and all these things that make it unnecessary and impossible to have that as part of everybody’s everyday life.

And there’s no reason that can’t happen in most other domains, I think it is happening. I think almost anything is possible. It’s amazing how far we’ve come, and I see no reason to think that there’s some hard limit on how far we go.

Lucas Perry: So I’m hopeful for the new year simply because in areas that are important, I think things are on average getting better than they are getting worse. And it seems to be that much of what causes pessimism is perception that things are getting worse, or that we have these strange nostalgias for past times that we believe to be better than the present moment.

This isn’t new thinking, and is much in line with what Steven Pinker has said, but I feel that when we look at the facts about things like poverty, or knowledge, or global health, or education, or even the conversation surrounding AI alignment and existential risk, that things really are getting better, and that generally the extent to which it seems like it isn’t or that things are getting worse can be seen in many cases as our trend towards more information causing the perception that things are getting worse. But really, we are shining a light on everything that is already bad or we are coming up with new solutions to problems which generate new problems in and of themselves. And I think that this trend towards elucidating all of the problems which already exist, or through which we develop technologies and come to new solutions, which generate their own novel problems, this can seem scary as all of these bad things continue to come up, it seems almost never ending.

But they seem to me more now like revealed opportunities for growth and evolution of human civilization to new heights. We are clearly not at the pinnacle of life or existence or wellbeing, so as we encounter and generate and uncover more and more issues, I find hope in the fact that we can rest assured that we are actively engaged in the process of self-growth as a species. Without encountering new problems about ourselves, we are surely stagnating and risk decline. However, it seems that as we continue to find suffering and confusion and evil in the world and to notice how our new technologies and skills may contribute to these things, we have an opportunity to act upon remedying them and then we can know that we are still growing and that, that is a good thing. And so I think that there’s hope in the fact that we’ve continued to encounter new problems because it means that we continue to grow better. And that seems like a clearly good thing to me.

And with that, thanks so much for tuning into this Year In The Review Podcast on our activities and team as well as our feelings about existential hope moving forward. If you’re a regular listener, we want to share our deepest thanks for being a part of this conversation and thinking about these most fascinating and important of topics. And if you’re a new listener, we hope that you’ll continue to join us in our conversations about how to solve the world’s most pressing problems around existential risks and building a beautiful future for all. Many well and warm wishes for a happy and healthy end of the year for everyone listening from the Future of Life Institute team. If you find this podcast interesting, valuable, unique, or positive, consider sharing it with friends and following us on your preferred listening platform. You can find links for that on the pages for these podcasts found at futureoflife.org.